
MiniHack

MiniHack Team @ Facebook AI Research, UCL, and Oxford

Feb 15, 2024

GETTING STARTED

1 MiniHack Level Editor 3

2 Language Wrapper 5

3 Papers using MiniHack 7

4 Installation 9

5 Submitting New Environments 11

6 Trying out MiniHack 13

7 Baseline Agents 15

8 Citation 17

9 Contributions and Maintenance 19

Python Module Index 115

Index 117

i

ii

MiniHack

MiniHack is a sandbox framework for easily designing rich and diverse environments for Reinforcement Learning
(RL). Based on the game of NetHack, MiniHack uses the NetHack Learning Environment (NLE) to communicate
with the game and to provide a convenient interface for customly created RL training and test environments of varying
complexity. Check out our NeurIPS 2021 paper and recent blogpost.

MiniHack comes with a large list of challenging environments. However, it is primarily built for easily designing new
ones. The motivation behind MiniHack is to be able to perform RL experiments in a controlled setting while being
able to increasingly scale the complexity of the tasks.

To do this, MiniHack leverages the so-called description files written using a human-readable probabilistic-
programming-like domain-specific language. With just a few lines of code, people can generate a large variety of
Gym environments, controlling every little detail, from the location and types of monsters, to the traps, objects, and
terrain of the level, all while introducing randomness that challenges generalization capabilities of RL agents. For
further details, we refer users to our brief overview, detailed tutorial, or interactive notebook.

Our documentation will walk you through everything you need to know about MiniHack, step-by-step, including infor-
mation on how to get started, configure environments or design new ones, train baseline agents, and much more.

GETTING STARTED 1

https://en.wikipedia.org/wiki/NetHack
https://github.com/facebookresearch/nle
https://arxiv.org/abs/2109.13202
https://ai.facebook.com/blog/minihack-a-new-sandbox-for-open-ended-reinforcement-learning
https://minihack.readthedocs.io/en/latest/envs/index.html
https://nethackwiki.com/wiki/Des-file_format
https://github.com/openai/gym
https://minihack.readthedocs.io/en/latest/getting-started/des_files.html
https://minihack.readthedocs.io/en/latest/tutorials/des_file_tutorial.html
https://minihack.readthedocs.io/

MiniHack

2 GETTING STARTED

CHAPTER

ONE

MINIHACK LEVEL EDITOR

The MiniHack Level Editor allows to easily define MiniHack environments inside a browser using a convenient drag-
and-drop functionality. The source code is available here.

3

https://minihack-editor.github.io
https://github.com/minihack-editor/minihack-editor.github.io

MiniHack

4 Chapter 1. MiniHack Level Editor

CHAPTER

TWO

LANGUAGE WRAPPER

We thank ngoodger for implementing the NLE Language Wrapper that translates the non-language observations from
Net/MiniHack tasks into similar language representations. Actions can also be optionally provided in text form which
are converted to the Discrete actions of the NLE.

5

https://github.com/ngoodger
https://github.com/ngoodger/nle-language-wrapper

MiniHack

6 Chapter 2. Language Wrapper

CHAPTER

THREE

PAPERS USING MINIHACK

• Raparthy et al. Learning to Solve New sequential decision-making Tasks with In-Context Learning (Meta AI,
UCL, FMDM 2023)

• Nottingham et al. Selective Perception: Learning Concise State Descriptions for Language Model Actors (UC
Irvine, FMDM 2023)

• Prakash et al. LLM Augmented Hierarchical Agents (Maryland, JHU, LangRob 2023)

• Castanyer et al. Improving Intrinsic Exploration by Creating Stationary Objectives (Mila, Ubisoft, Nov 2023)

• Henaff et al. A Study of Global and Episodic Bonuses for Exploration in Contextual MDPs (Meta AI, UCL,
ICML 2023)

• Bagaria et al. Scaling Goal-based Exploration via Pruning Proto-goals (Brown, DeepMind, Feb 2023)

• Carvalho et al. Composing Task Knowledge with Modular Successor Feature Approximators (UMich, Oxford,
LGAI, ICLR 2023)

• Kessler et al. The Surprising Effectiveness of Latent World Models for Continual Reinforcement Learning (Ox-
ford, Polish Academy of Sciences, DeepRL Workshop 2022)

• Wagner et al. Cyclophobic Reinforcement Learning (HHU Düsseldorf, TU Dortmund, DeepRL Workshop 2022)

• Henaff et al. Integrating Episodic and Global Bonuses for Efficient Exploration (Meta AI, UCL, DeepRL Work-
shop 2022)

• Jiang et al. Grounding Aleatoric Uncertainty in Unsupervised Environment Design (FAIR, UCL, Berkeley,
Oxford, NeurIPS 2022)

• Henaff et al. Exploration via Elliptical Episodic Bonuses (Meta AI, UCL, NeurIPS 2022)

• Mu et al. Improving Intrinsic Exploration with Language Abstractions (Stanford, UW, Meta AI, UCL, NeurIPS
2022)

• Chester et al. Oracle-SAGE: Planning Ahead in Graph-Based Deep Reinforcement Learning (RMIT University,
Sept 2022)

• Walker et al. Unsupervised representational learning with recognition-parametrised probabilistic models (UCL,
Sept 2022)

• Matthews et al. Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning (UCL, Meta AI, Oxford,
CoLLAs 2022)

• Powers et al. CORA: Benchmarks, Baselines, and a Platform for Continual Reinforcement Learning Agents
(CMU, Georgia Tech, AI2, CoLLAs 2022)

• Nottingham et al. Learning to Query Internet Text for Informing Reinforcement Learning Agents (UC Irvine,
May 2022)

7

https://arxiv.org/abs/2312.03801
https://openreview.net/forum?id=siFopuPuCS
https://arxiv.org/abs/2312.03801
https://arxiv.org/abs/2310.18144
https://arxiv.org/abs/2306.03236
https://arxiv.org/abs/2302.04693
https://arxiv.org/abs/2301.12305
https://arxiv.org/abs/2211.15944
https://openreview.net/forum?id=jH0Oc8gJ6G
https://openreview.net/forum?id=uMZkWW0uB3
https://arxiv.org/abs/2207.05219
https://arxiv.org/abs/2210.05805
https://arxiv.org/abs/2202.08938
https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_137.pdf
https://arxiv.org/abs/2209.05661
https://arxiv.org/abs/2207.11584
https://arxiv.org/abs/2110.10067
https://arxiv.org/abs/2205.13079

MiniHack

• Matthews et al. SkillHack: A Benchmark for Skill Transfer in Open-Ended Reinforcement Learning (UCL, Meta
AI, Oxford, April 2022)

• Parker-Holder et al. Evolving Curricula with Regret-Based Environment Design (Oxford, Meta AI, UCL, Berke-
ley, ICML 2022)

• Parker-Holder et al. That Escalated Quickly: Compounding Complexity by Editing Levels at the Frontier of
Agent Capabilities (Oxford, FAIR, UCL, Berkeley, DeepRL Workshop 2021)

• Samvelyan et al. MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research (FAIR,
UCL, Oxford, NeurIPS 2021)

Open a pull request to add papers.

8 Chapter 3. Papers using MiniHack

https://openreview.net/forum?id=rHSVHmDWI-9
https://arxiv.org/abs/2203.01302
https://openreview.net/forum?id=3qGInPFqR0p
https://openreview.net/forum?id=3qGInPFqR0p
https://arxiv.org/abs/2109.13202
https://github.com/facebookresearch/minihack/edit/main/README.md

CHAPTER

FOUR

INSTALLATION

The simplest way to install MiniHack is through pypi:

pip install minihack

4.1 Extending MiniHack

If you wish to extend MiniHack, please install the package as follows:

git clone https://github.com/facebookresearch/minihack
cd minihack
pip install -e ".[dev]"
pre-commit install

See the full installation guide for further information on installing and extending MiniHack on different platforms, as
well as pre-installed Dockerfiles.

9

https://pypi.org/project/minihack/

MiniHack

10 Chapter 4. Installation

CHAPTER

FIVE

SUBMITTING NEW ENVIRONMENTS

For submitting your own MiniHack-based environment to our zoo of public environments, please follow the instructions
here.

11

https://minihack.readthedocs.io/en/latest/envs/index.html

MiniHack

12 Chapter 5. Submitting New Environments

CHAPTER

SIX

TRYING OUT MINIHACK

MiniHack uses the popular Gym interface for the interactions between the agent and the environment. A pre-registered
MiniHack environment can be used as follows:

import gym
import minihack
env = gym.make("MiniHack-River-v0")
env.reset() # each reset generates a new environment instance
env.step(1) # move agent '@' north
env.render()

To see the list of all MiniHack environments, run:

python -m minihack.scripts.env_list

The following scripts allow to play MiniHack environments with a keyboard:

Play the MiniHack in the Terminal as a human
python -m minihack.scripts.play --env MiniHack-River-v0

Use a random agent
python -m minihack.scripts.play --env MiniHack-River-v0 --mode random

Play the MiniHack with graphical user interface (gui)
python -m minihack.scripts.play_gui --env MiniHack-River-v0

NOTE: If the package has been properly installed one could run the scripts above with mh-envs, mh-play, and
mh-guiplay commands.

13

https://github.com/openai/gym

MiniHack

14 Chapter 6. Trying out MiniHack

CHAPTER

SEVEN

BASELINE AGENTS

In order to get started with MiniHack environments, we provide a variety of baselines agent integrations.

7.1 TorchBeast

A TorchBeast agent is bundled in minihack.agent.polybeast together with a simple model to provide a starting
point for experiments. To install and train this agent, first install torchbeast by following the instructions here, then use
the following commands:

pip install -e ".[polybeast]"
python -m minihack.agent.polybeast.polyhydra env=MiniHack-Room-5x5-v0 total_steps=100000

More information on running our TorchBeast agents, and instructions on how to reproduce the results of the paper,
can be found here. The learning curves for all of our polybeast experiments can be accessed in our Weights&Biases
repository.

7.2 RLlib

An RLlib agent is provided in minihack.agent.rllib, with a similar model to the torchbeast agent. This can be
used to try out a variety of different RL algorithms. To install and train an RLlib agent, use the following commands:

pip install -e ".[rllib]"
python -m minihack.agent.rllib.train algo=dqn env=MiniHack-Room-5x5-v0 total_
→˓steps=1000000

More information on running RLlib agents can be found here.

7.3 Unsupervised Environment Design

MiniHack also enables research in Unsupervised Environment Design, whereby an adaptive task distribution is learned
during training by dynamically adjusting free parameters of the task MDP. Check out the ucl-dark/paired repository
for replicating the examples from the paper using the PAIRED.

15

https://github.com/facebookresearch/torchbeast
https://github.com/facebookresearch/torchbeast#installing-polybeast
https://wandb.ai/minihack
https://wandb.ai/minihack
https://github.com/ray-project/ray#rllib-quick-start
https://github.com/ucl-dark/paired
https://arxiv.org/abs/2012.02096

MiniHack

16 Chapter 7. Baseline Agents

CHAPTER

EIGHT

CITATION

If you use MiniHack in your work, please cite:

@inproceedings{samvelyan2021minihack,
title={MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research},
author={Mikayel Samvelyan and Robert Kirk and Vitaly Kurin and Jack Parker-Holder and␣

→˓Minqi Jiang and Eric Hambro and Fabio Petroni and Heinrich Kuttler and Edward␣
→˓Grefenstette and Tim Rockt{\"a}schel},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets␣

→˓and Benchmarks Track (Round 1)},
year={2021},
url={https://openreview.net/forum?id=skFwlyefkWJ}

}

If you use our example ported environments, please cite the original papers: MiniGrid (see license, bib), Boxoban (see
license, bib).

17

https://github.com/maximecb/gym-minigrid/
https://github.com/maximecb/gym-minigrid/blob/master/LICENSE
https://github.com/maximecb/gym-minigrid/#minimalistic-gridworld-environment-minigrid
https://github.com/deepmind/boxoban-levels/
https://github.com/deepmind/boxoban-levels/blob/master/LICENSE
https://github.com/deepmind/boxoban-levels/#bibtex

MiniHack

18 Chapter 8. Citation

CHAPTER

NINE

CONTRIBUTIONS AND MAINTENANCE

MiniHack was built and is maintained by Meta AI (FAIR), UCL DARK and University of Oxford. We welcome
contributions to MiniHack. If you are interested in contributing, please see this document. Our maintenance plan can
be found here.

9.1 Installation

MiniHack is available on pypi and can be installed as follows:

pip install minihack

We advise using a conda environment for this:

conda create -n minihack python=3.8
conda activate minihack
pip install minihack

Note: Please refer to NLE installation instructions when having NLE-related dependency issues on MacOS and
Ubuntu 18.04. NLE requires cmake>=3.15 to be installed when building the package.

Note: Windows users should use Docker.

Note: Baseline agents have separate installation instructions. See here for more details.

9.1.1 Extending MiniHack

If you wish to extend MiniHack, please install the package as follows:

git clone https://github.com/facebookresearch/minihack
cd minihack
pip install -e ".[dev]"
pre-commit install

19

https://ai.facebook.com/
https://ucldark.com/
https://www.ox.ac.uk/
https://pypi.org/project/minihack/
https://github.com/facebookresearch/nle#installation
https://github.com/facebookresearch/minihack#baseline-agents

MiniHack

9.1.2 Docker

We have provided several Dockerfiles for building images with pre-installed MiniHack. Please follow the instructions
described here.

9.2 Trying out MiniHack

MiniHack uses the popular Gym interface for the interactions between the agent and the environment.

A pre-registered MiniHack environment can be used as follows:

import gym
import minihack
env = gym.make("MiniHack-River-v0")
env.reset() # each reset generates a new environment instance
env.step(1) # move agent '@' north
env.render()

The gym.make command can also be used to override specific environment parameters:

env = gym.make(
"MiniHack-River-v0",
observation_keys=("pixel", "glyphs", "colors", "chars"),
max_episode_steps=100,

)

To see the list of all MiniHack environments, run:

python -m minihack.scripts.env_list

9.2.1 Playing as a human

The following scripts allow to play MiniHack environments with a keyboard:

Play the MiniHack in the Terminal as a human
$ python -m minihack.scripts.play --env MiniHack-River-v0

Use a random agent
$ python -m minihack.scripts.play --env MiniHack-River-v0 --mode random

Play the MiniHack with graphical user interface (gui)
$ python -m minihack.scripts.play_gui --env MiniHack-River-v0

Note: If the package has been properly installed, one could run the scripts above with mh-envs, mh-play, and
mh-guiplay commands.

20 Chapter 9. Contributions and Maintenance

https://github.com/openai/gym

MiniHack

9.3 Observation Spaces

9.3.1 Overview

MiniHack supports several forms of observations, including global or agent-centred viewpoints (or both) of the grid.
The table bellow illustrateds three forms of agent-centred observations of the grid of the map in MiniHack.

Pixel Observations Symbolic
Observa-
tions

Textual Observations

In addition, observations can include player statistics, in-game text messages, and inventory information.

9.3. Observation Spaces 21

MiniHack

9.3.2 Specifying the Observation Space

MiniHack has a dictionary-structured observation space. Most keys are inherited from NLE, while some are added
in MiniHack. To make sure that the desired observations are returned by the environment, the corresponding options
should be passed during the initialisation. The observation_keys parameter can be used to specify the observation
space in any MiniHack environment:

env = gym.make(
"MiniHack-River-v0",
observation_keys=("glyphs", "chars", "colors", "pixel"),

)

Note that using different observation keys can make environments significantly easier or harder.

9.3.3 Options

Name Description
glyphs a 21× 79 matrix of glyphs (ids of entities) on the map. Each glyph represents an entirely unique entity,

so these are integers between 0 and 5991. In the standard terminal-based view of NetHack, these glyphs
are represented by characters, with colours and other possible visual features.

chars a 21× 79 matrix of the characters representing the map.
colors a 21×79 matrix of the colours of each of the characters on the map (some characters represent different

objects or monsters depending on their colour).
specials a 21× 79 matrix of special extra information about the view of that cell on the map, for example, if the

foreground and background colour should be reversed.
screen_descriptionsa 21×79×80 tensor of utf-8 encodings of textual descriptions of each cell present in the map. NetHack

provides these textual descriptions (which can be accessed by the user by using the describe action on
a specific tile).

pixel a representation of the current screen in image form, where each cell is represented by a 16 × 16 × 3
image, meaning the entire observation is so 336× 1264× 3 (with 3 channels for RGB).

blstats a representation of the status line at the bottom of the screen, containing information about the player
character’s position, health, attributes and other statuses. It comes in the form of a dimension 25 vector.

message the utf-8 encoding of the on-screen message displayed at the top of the screen. It’s a 256-dimensional
vector.

inv_glyphsa 55-dimensional vector representing the glyphs present in the current inventory view.
inv_lettersa 55-dimensional vector representing the letters present in the current inventory view.
inv_oclassesa 55-dimensional vector representing the class of objects present in the current inventory view.
inv_strs a 55 × 80 matrix containing utf-8 encodings of textual descriptions of objects present in the current

inventory view.
tty_chars the character representation of the entire screen, including the message and map, of size 24× 80.
tty_colorsthe color representation of the entire screen, including the message and map, of size 24× 80.
tty_cursorthe location of the cursor on the screen, a 2-dimensional vector of (x,y) coordinates.

Note: For glyphs, chars, colors, specials, pixel, screen_descriptions, tty_chars, and tty_colors
a cropped observation centered the agent can be used by passing the observation name suffixed with _crop (e.g.
chars_crop). This is a NxN matrix centered on the agent’s current location containing the information normally
present in the full view. The size of the crop can easily be configured using the obs_crop_h and obs_crop_w param-
eters of the environment (9 by default). Cropped observations can facilitate the learning, as the egocentric input makes
representation learning easier.

22 Chapter 9. Contributions and Maintenance

MiniHack

9.4 Action Spaces

9.4.1 Overview

MiniHack has a large, structured and context-sensitive action space. We give practitioners an easy way to restrict the
action space in order to promote targeted skill discovery. For example, navigation tasks mostly require movement
commands, and occasionally, kicking doors, searching or eating. Skill acquisition tasks, on the other hand, require in-
teractions with objects, e.g. managing the inventory, casting spells, zapping wands, reading scrolls, eating comestibles,
quaffing potions, etc. In these tasks 75 actions are used.

The actual game of NetHack uses ASCII inputs, i.e., individual keyboard presses including modifiers like Ctrl and
Meta. NLE pre-defines 98 actions, 16 of which are compass directions and 82 of which are command actions.

9.4.2 Specifying the Action Space

The actions used in MiniHack are defined here. The following example shows how to set the action space of the
environment to movements towards 8 compass directions with open, kick, and search actions.

from nle import nethack
MOVE_ACTIONS = tuple(nethack.CompassDirection)
NAVIGATE_ACTIONS = MOVE_ACTIONS + (

nethack.Command.OPEN,
nethack.Command.KICK,
nethack.Command.SEARCH,

)
env = gym.make(

"MiniHack-Corridor-R3-v0",
actions=NAVIGATE_ACTIONS,

)

Note that using different observation keys can make environments significantly easier or harder.

9.4.3 Possible Actions

Name Value Key Description
EXTCMD 35 # perform an extended command
EXTLIST 191 M-? list all extended commands
ADJUST 225 M-a adjust inventory letters
ANNOTATE 193 M-A name current level
APPLY 97 a apply (use) a tool (pick-axe, key, lamp. . .)
ATTRIBUTES 24 C-x show your attributes
AUTOPICKUP 64 @ toggle the pickup option on/off
CALL 67 C call (name) something
CAST 90 Z zap (cast) a spell
CHAT 227 M-c talk to someone
CLOSE 99 c close a door
CONDUCT 195 M-C list voluntary challenges you have maintained
DIP 228 M-d dip an object into something
DOWN 62 > go down (e.g., a staircase)
DROP 100 d drop an item

continues on next page

9.4. Action Spaces 23

https://github.com/facebookresearch/nle/blob/master/nle/nethack/actions.py

MiniHack

Table 1 – continued from previous page
Name Value Key Description
DROPTYPE 68 D drop specific item types
EAT 101 e eat something
ESC 27 C-[escape from the current query/action
ENGRAVE 69 E engrave writing on the floor
ENHANCE 229 M-e advance or check weapon and spell skills
FIRE 102 f fire ammunition from quiver
FIGHT 70 F Prefix: force fight even if you don’t see a monster
FORCE 230 M-f force a lock
GLANCE 59 ; show what type of thing a map symbol corresponds to
HELP 63 ? give a help message
HISTORY 86 V show long version and game history
INVENTORY 105 i show your inventory
INVENTTYPE 73 I inventory specific item types
INVOKE 233 M-i invoke an object’s special powers
JUMP 234 M-j jump to another location
KICK 4 C-d kick something
KNOWN 92 \ show what object types have been discovered
KNOWNCLASS 96 ` show discovered types for one class of objects
LOOK 58 : look at what is here
LOOT 236 M-l loot a box on the floor
MONSTER 237 M-m use monster’s special ability
MORE 13 C-m read the next message
MOVE 109 m Prefix: move without picking up objects/fighting
MOVEFAR 77 M Prefix: run without picking up objects/fighting
OFFER 239 M-o offer a sacrifice to the gods
OPEN 111 o open a door
OPTIONS 79 O show option settings, possibly change them
OVERVIEW 15 C-o show a summary of the explored dungeon
PAY 112 p pay your shopping bill
PICKUP 44 , pick up things at the current location
PRAY 240 M-p pray to the gods for help
PREVMSG 16 C-p view recent game messages
PUTON 80 P put on an accessory (ring, amulet, etc)
QUAFF 113 q quaff (drink) something
QUIT 241 M-q exit without saving current game
QUIVER 81 Q select ammunition for quiver
READ 114 r read a scroll or spellbook
REDRAW 18 C-r redraw screen
REMOVE 82 R remove an accessory (ring, amulet, etc)
RIDE 210 M-R mount or dismount a saddled steed
RUB 242 M-r rub a lamp or a stone
RUSH 103 g Prefix: rush until something interesting is seen
SAVE 83 S save the game and exit
SEARCH 115 s search for traps and secret doors
SEEALL 42 * show all equipment in use
SEETRAP 94 ^ show the type of adjacent trap
SIT 243 M-s sit down
SWAP 120 x swap wielded and secondary weapons
TAKEOFF 84 T take off one piece of armor

continues on next page

24 Chapter 9. Contributions and Maintenance

MiniHack

Table 1 – continued from previous page
Name Value Key Description
TAKEOFFALL 65 A remove all armor
TELEPORT 20 C-t teleport around the level
THROW 116 t throw something
TIP 212 M-T empty a container
TRAVEL 95 _ travel to a specific location on the map
TURN 244 M-t turn undead away
TWOWEAPON 88 X toggle two-weapon combat
UNTRAP 245 M-u untrap something
UP 60 < go up (e.g., a staircase)
VERSION 246 M-v list compile time options
VERSIONSHORT 118 v show version
WAIT / SELF 46 . rest one move while doing nothing / apply to self
WEAR 87 W wear a piece of armor
WHATDOES 38 & tell what a command does
WHATIS 47 / show what type of thing a symbol corresponds to
WIELD 119 w wield (put in use) a weapon
WIPE 247 M-w wipe off your face
ZAP 112 z zap a wand

The descriptions are mostly taken from the cmd.c file in the NetHack source code. For a detailed description of these
actions, as well as other NetHack commands, we refer the reader to the NetHack guide book.

9.5 Description files

Note: This is a brief overview of the des-file format. An in-depth, visually-aided tutorial can be found here.

9.5.1 Overview

MiniHack leverages the description files of NetHack to provide a means to easily design rich and diverse environments.
The description files (or des-files) are human-readable specifications of levels: distributions of grid layouts together
with monsters, objects on the floor, environment features (e.g. walls, water, lava), etc. The developers of NetHack
created a special domain-specific language for describing the levels of the game, called des-file format. The des-files
can be compiled into binary using the NetHack level compiler, and MiniHack maps them to Gym environments.

Levels defined via des-file format can be fairly rich, as the underlying programming language has support for variables,
loops, conditional statements, as well as probability distributions. Crucially, it supports underspecified statements, such
as generating a random monster or an object at a random location on the map. Furthermore, it features commands that
procedurally generate diverse grid layouts in a single line.

Below we present a brief overview of the different kinds of des-files, how to add entities to levels, and the main sources
of randomness that can be used to create a distribution of levels on which to train RL agents. Please check out our
in-depth, visually-aided tutorial here. We also refer users to the des-file tutorial in NetHack wiki.

Note: MiniHack addionally provides a convenient interface to describe the entire environment directly in Python.
Check out our LevelGenerator here.

9.5. Description files 25

http://www.nethack.org/download/3.6.5/nethack-365-Guidebook.pdf
https://nethackwiki.com/wiki/Des-file_format
./interface.html#level-generator

MiniHack

9.5.2 Types of des-files

There are two types of levels that can be created using des-file format, namely MAZE-type and ROOM-type:

• MAZE-type levels are composed of maps of the level (specified with the MAP command) which are drawn using
ASCII characters, followed by descriptions of the contents of the level, described in detail below. In MAZE-type
environments, the layout of the map is fixed, but random terrain can be created around (or within) that map using
the MAZEWALK command, which creates a random maze from a given location and filling all available space of a
certain terrain type.

• ROOM-type levels are composed of descriptions of rooms (specified by the ROOM command), each of which can
have its contents specified by the commands described below. Generally, the RANDOM_CORRIDORS command
is then used to create random corridors between all the rooms so that they are accessible. On creation, the file
specifies (or leaves random) the room’s type, lighting and approximate location. It is also possible to create sub-
rooms (using the SUBROOM command) which are rooms guaranteed to be within the outer room and are otherwise
specified as normal rooms (but with a location relative to the outer room).

9.5.3 Adding Entities to des-files

As we have seen above, there are multiple ways to define the layout of a level using the des-file format. Once the layout
is defined, it is useful to be able to add entities to the level. These could be monsters, objects, traps or other specific
terrain features (such as sinks, fountains or altars). In general, the syntax for adding one of these objects is:

ENTITY: specification, location, extra-details

For example:

MONSTER: ('F',"lichen"), (1,1)
OBJECT: ('%',"apple"), (10,10)
TRAP: 'teleportation', (1,1)
SINK: (1,1)
FOUNTAIN: (0,0)

Note that many of the details here can instead be set to random. In this case, the game engine chooses a suitable
value for that argument randomly each time the level is generated. For monsters and objects, this randomness can be
controlled by just specifying the class of the monster or object and letting the specific object or monster be chosen
randomly. For example:

MONSTER: 'F', (1,1)
OBJECT: '%', (10,10)

This code would choose a random monster from the Fungus class, and a random object from the Comestible class.

9.5.4 Sources of Randomness in des-files

We have seen how to create either very fixed (MAZE-type) or very random (ROOM-type) levels, and how to add entities
with some degree of randomness. The des-file format has many other ways of adding randomness, which can be used
to control the level generation process, including where to add terrain and in what way. Many of these methods are
used in \texttt{IF} statements, which can be in one of two forms:

IF[50%] {
MONSTER: 'F', (1,1)

} ELSE {
(continues on next page)

26 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Fungus
https://nethackwiki.com/wiki/Comestible

MiniHack

(continued from previous page)

ELSE is not always necessary
OBJECT: '%', (1,1)

}

IF[$variable_name < 15] {
MONSTER: 'F', (1,1)

}

In the first form, a simple percentage is used for the random choice, whereas in the second, a variable (which could have
been randomly determined earlier in the file) is used. A natural way to specify this variable is either in other conditional
statements (perhaps you randomly add some number of monsters, and want to count the number of monsters you add
such that if there are many monsters, you also add some extra weapons for the agent), or through dice notation. Dice
notation is used to specify random expressions which resolve to integers (and hence can be used in any place an integer
would be). They are of the form \texttt{NdM}, which means to roll N M-sided dice and sum the result. For example:

$roll = 2d6
IF[$roll < 7] {

MONSTER: random, random
}

Dice rolls can also be used for accessing arrays, another feature of the des-file format. Arrays are initialised with one
or more objects of the same type, and can be indexed with integers (starting at 0), for example:

An array of monster classes
$mon_letters = { 'A', 'L', 'V', 'H' }
An array of monster names from each monster class respectively
$mon_names = { "Archon", "arch-lich", "vampire lord", "minotaur" }
The monster to choose
$mon_index = 1d4 - 1
MONSTER:($mon_letters[$mon_index],$mon_names[$mon_index]),(10,18)

Another way to perform random operations with arrays is using the SHUFFLE command. This command takes an array
and randomly shuffles it. This would not work with the above example, as the monster name needs to match the monster
class (i.e. we could not use ('A', "minotaur"). For example:

$object = object: { '[',')','*','%' }
SHUFFLE: $object

Now the $object array will be randomly shuffled. Often, something achievable with shuffling can also be achieved
with dice-rolls, but it is simpler to use shuffled arrays rather than dice-rolls (for example, if you wanted to guarantee
each of the elements of the array was used exactly once, but randomise the order, it is much easier to just shuffle the
array and select them in order rather than try and generate exclusive dice rolls).

9.5. Description files 27

MiniHack

9.5.5 Random Terrain Placement

When creating a level, we may want to specify the structure or layout of the level (using a MAZE-type level), but
then randomly create the terrain within the level, which will determine accessibility and observability for the agent
and monsters in the level. As an example, consider the following example. In this level, we start with an empty 11x9
MAP. We first replace 33% of the squares with clouds 'C', and then 25% with trees 'T'. To ensure that any corner
is accessible from any other, we create two random-walk lines using randline from opposite corners and make all
squares on those lines floor .. To give the agent a helping hand, we choose a random square in the centre of the room
with rndcoord (which picks a random coordinate from a selection of coordinates) and place an apple there.

MAZE: "mylevel", ' '
GEOMETRY:center,center
MAP
...........
...........
...........
...........
...........
...........
...........
...........
...........
ENDMAP
REGION:(0,0,11,9),lit,"ordinary"
REPLACE_TERRAIN:(0,0,11,9), '.', 'C', 33%
REPLACE_TERRAIN:(0,0,11,9), '.', 'T', 25%
TERRAIN:randline (0,9),(11,0), 5, '.'
TERRAIN:randline (0,0),(11,9), 5, '.'
$center = selection: fillrect (5,5,8,8)
$apple_location = rndcoord $center
OBJECT: ('%', "apple"), $apple_location

$monster = monster: { 'L','N','H','O','D','T' }
SHUFFLE: $monster
$place = { (10,8),(0,8),(10,0) }
SHUFFLE: $place
MONSTER: $monster[0], $place[0], hostile
STAIR:$place[2],down
BRANCH:(0,0,0,0),(1,1,1,1)

Several other methods of randomly creating selections such as filter (randomly remove points from a selection) and
gradient (create a selection based on a probability gradient across an area) are described in the NetHack wiki.

28 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Des-file_format

MiniHack

9.5.6 Further Information

For more information on the des-file format, be sure to check out our in-depth, visually-aided tutorial here.

9.6 Creating New Environments

9.6.1 Overview

Creating new environments using MiniHack is very simple. There are two main MiniHack base classes to chose from.

MiniHackNavigation ba can be used to design mazes and navigation tasks that only require a small action space. All
MiniHack navigation tasks make use of the MiniHackNavigation interface. The in-game multiple-choice question
prompts, which are used for interacting with objects and using the inventory, are turned off by default here.

MiniHackSkill provides a convenient mean for designing diverse skill acquisition tasks that require a large action space,
interactions with objects and more complex goals. All skill acquisition tasks in MiniHack use this base class. The in-
game multiple-choice question prompts is turned on by default.

The quickest way for creating a new environment is to use gym.make and pass the description file to the environment:

import gym
import minihack

des_file = """
MAZE: "mylevel",' '
GEOMETRY:center,center
MAP

|.....|.....|
|.....|.....|
|.....+.....|
|.....|.....|
|.....|.....|

ENDMAP
REGION:(0,0,12,6),lit,"ordinary"
BRANCH:(1,1,6,6),(0,0,0,0)
DOOR:locked,(6,3)
STAIR:(8,3),down
"""
env = gym.make(

"MiniHack-Navigation-Custom-v0",
des_file=des_file,
max_episode_steps=50,

)

Additional parameters for the environment can also be passed to gym.make, such as observation_keys, etc. By
default, the goal of the agent is to reach the stair down. However, reward functions in MiniHack can easily be configured.
See here for more information.

Alternatively, the users can subclass either MiniHackNavigation or MiniHackSkill classes.

from minihack import MiniHackNavigation
from minihack.envs import register

(continues on next page)

9.6. Creating New Environments 29

../api/minihack.html#minihack.MiniHackNavigation
../api/minihack.html#minihack.MiniHackSkill
../api/minihack.html#minihack.MiniHackNavigation
../api/minihack.html#minihack.MiniHackSkill

MiniHack

(continued from previous page)

class MiniHackNewTask(MiniHackNavigation):
def __init__(self, *args, des_file, **kwargs):

kwargs["max_episode_steps"] = kwargs.pop("max_episode_steps", 1000)
super().__init__(*args, des_file=des_file, **kwargs)

register(
id="MiniHack-NewTask-v0",
entry_point="path.to.file:MiniHackNewTask", # use the actual the path

)

For information about the description files, check out our brief overview, detailed tutorial or community wiki.

9.6.2 Level Generator

When creating a new MiniHack environment, a description file must be provided. One way of providing this des-
file is writing it entirely from scratch. However, this requires learning the des-file format and is more difficult to do
programmatically, so as part of MiniHack we provide the LevelGenerator class which provides a convenient wrap-
per around writing a des-file. The LevelGenerator class can be used to create MAZE-type levels with specified
heights and widths, and can then fill those levels with objects, monsters and terrain, and specify the start point of the
level. Combined with the RewardManager which handles rewards, this enables flexible creation of a wide variety of
environments.

The level generator can start with either an empty maze (in which case only height and width are specified, see Example
1) or with a pre-drawn map (see Example 2). After initialisation, the level generator can be used to add objects, traps,
monsters and other terrain features. Terrain can also be added (\cref{code:python} line 9). Once the level is complete,
the get_des() function returns the des-file which can then be passed to the environment creation.

Example 1 shows how to create a simple skill acquisition task that challenges the agent to eat an apple and wield a
dagger that is randomly placed in a 10x10 room surrounded by lava, alongside a goblin and a teleportation trap. Here,
a RewardManager is used to specify the tasks that need to be completed.

Example 2 illustrates how to create a labyrinth task. Here, the agent starts near the entrance of a maze and needs to
reach its centre. A Minotaur is placed deep inside the maze, which is a powerful monster capable of instantly killing
the agent in melee combat. There is a wand of death placed in a random location in the maze. The agent needs to
pick it up, and upon seeing the Minotaur, zap it in the direction of the monster. Once the Minotaur is killed, the agent
needs to navigate itself towards the staircase (this is the default goal when RewardManager is not used). Tools such as
Monodraw can help draw the map layout.

9.6.3 Examples

Example 1

Creating a skill task using the LevelGenerator and RewardManager.

from minihack import LevelGenerator
from minihack import RewardManager

Define a 10x10 room and populate it with
different objects, monster and features
lvl_gen = LevelGenerator(w=10, h=10)
lvl_gen.add_object("apple", "%")

(continues on next page)

30 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Des-file_format
../api/minihack.html#minihack.LevelGenerator
../api/minihack.html#minihack.RewardManager
../api/minihack.html#minihack.RewardManager
https://monodraw.helftone.com
../api/minihack.html#minihack.LevelGenerator
../api/minihack.html#minihack.RewardManager

MiniHack

(continued from previous page)

lvl_gen.add_object("dagger", ")")
lvl_gen.add_trap(name="teleport")
lvl_gen.add_sink()
lvl_gen.add_monster("goblin")
lvl_gen.fill_terrain("rect", "L",

0, 0, 9, 9)

Define a reward manager
reward_manager = RewardManager()
+1 reward and termination for eating
an apple or wielding a dagger
reward_manager.add_eat_event("apple")
reward_manager.add_wield_event("dagger")
-1 reward for standing on a sink
but isn't required for terminating
the episode
reward_manager.add_location_event("sink",

reward=-1, terminal_required=False)

env = gym.make(
"MiniHack-Skill-Custom-v0",
des_file=lvl_gen.get_des(),
reward_manager=reward_manager,

)

Example 2

Creating a MiniHack skill task using LevelGenerator with a pre-defined map layout.

from minihack import LevelGenerator

Define the maze as a string
maze = """

.......				
.-----.	.	.-----	.			
.	
.	-----.	.
.
.	.--------.	.	.	.		
.			
.	--------------	.				
..................						

"""
Set a start and goal positions
lvl_gen = LevelGenerator(map=maze)
lvl_gen.set_start_pos((9, 1))
lvl_gen.add_goal_pos((14, 5))
Add a Minotaur at fixed position
lvl_gen.add_monster(name="minotaur",

(continues on next page)

9.6. Creating New Environments 31

../api/minihack.html#minihack.LevelGenerator

MiniHack

(continued from previous page)

place=(19, 9))
Add wand of death
lvl_gen.add_object("death", "/")

env = gym.make(
"MiniHack-Skill-Custom-v0",
des_file = lvl_gen.get_des(),

)

9.7 Reward Function

9.7.1 Default Configuration

Reward functions in MiniHack can easily be configured. The default reward function of custom MiniHack environments
is a sparse reward of +1 for reaching the staircase down (which terminates the episode), and 0 otherwise, with episodes
terminating after a configurable number of timesteps. In addition, the agent receives a negative reward of -0.01 if the
game timer doesn’t progress during a step (e.g. the agent moves towards a wall).

These defaults can be easily adjusted using the following environment flags:

Parameter Default
Value

Description

reward_win 1 the reward received upon successfully completing an episode.
reward_lose 0 the reward received upon death or aborting.
penalty_mode“constant” name of the mode for calculating the time step penalty. Can be constant, exp,

square, linear, or always.
penalty_step-0.01 constant applied to amount of frozen steps.
penalty_time0 constant applied to amount of non-frozen steps.

9.7.2 Reward Manager

We also provide an interface for designing custom reward functions. By using the RewardManager, users can control
what events give the agent reward, whether those events can be repeated, and what combinations of events are sufficient
or required to terminate the episode.

In order to use the reward managers, users need create an instance of the class and pass it to a MiniHack environment.
In the example below, the agent receives +1 reward for eating an apple or +2 reward for wielding a dagger (both of
which also terminate the episode). In addition, the agent receives -1 reward for standing on a sink, but the episode isn’t
termianted in this case.

from minihack import RewardManager

reward_manager = RewardManager()
reward_manager.add_eat_event("apple", reward=1)
reward_manager.add_wield_event("dagger", reward=2)
reward_manager.add_location_event("sink", reward=-1, terminal_required=False)

env = gym.make("MiniHackSkill",
(continues on next page)

32 Chapter 9. Contributions and Maintenance

../api/minihack.html#minihack.RewardManager

MiniHack

(continued from previous page)

des_file=des_file,
reward_manager=reward_manager)

While the basic reward manager supports many events by default, users may want to extend this interface to define
their own events. This can be done easily by inheriting from the Event class and implementing the check and reset
methods. Beyond that, custom reward functions can be added to the reward manager through add_custom_reward_fn
method. These functions take the environment instance, the previous observation, action taken and current observation,
and should return a float.

We also provide two ways to combine events in a more structured way. The SequentialRewardManager works similarly
to the normal reward manager but requires the events to be completed in the sequence they were added, terminating the
episode once the last event is complete. The GroupedRewardManager combines other reward managers, with termina-
tion conditions defined across the reward managers (rather than individual events). This allows complex conjunctions
and disjunctions of groups of events to specify termination. For example, one could specify a reward function that
terminates if a sequence of events (a,b,c) was completed, or all events {d,e,f} were completed in any order and the
sequence (g,h) was completed.

9.8 Level Editor

9.8.1 Overview

The MiniHack Level Editor allows to easily define MiniHack environments inside a browser using a convenient drag-
and-drop functionality. Once the level has been designed using the user interface, its description file can be easily
copied and applied to the downstream codebase.

9.8.2 Accessing the Level Editor

The MiniHack level editor can be accessed at minihack-editor.github.io. Please follow the instructions on the website
for generating description files of the designed levels.

9.8. Level Editor 33

../api/minihack.reward_manager.html#minihack.reward_manager.Event
../api/minihack.reward_manager.html#minihack.reward_manager.SequentialRewardManager
../api/minihack.reward_manager.html#minihack.reward_manager.GroupedRewardManager
https://minihack-editor.github.io

MiniHack

9.9 MiniHack Environment Zoo

This page describes all open-source MiniHack environments developed by its authors as well as members of the com-
munity. For adding your own MiniHack environment, please follow the instructions here.

9.9.1 Navigation Tasks

MiniHack navigation tasks challenge the agent to reach the goal position by overcoming various difficulties on their
way, such as fighting monsters in corridors, crossing rivers by pushing boulders into it, navigating through complex or
procedurally generated mazes. These tasks feature a relatively small action space, i.e., movement towards 8 compass
directions, and based on the environment, search, kick, open, and eat actions.

Room

These tasks are set in a single square room, where the goal is to reach the staircase down. There are multiple variants
of this level.

There are two sizes of the room (5x5, 15x15). In the simplest variants, (MiniHack-Room-5x5-v0 and
MiniHack-Room-15x15-v0), the start and goal position are fixed. In the MiniHack-Room-Random-5x5-v0
and MiniHack-Room-Random-15x15-v0 tasks, the start and goal position are randomised. The
rest of the variants add additional complexity to the randomised version of the environment by in-
troducing monsters (MiniHack-Room-Monster-5x5-v0 and MiniHack-Room-Monster-15x15-v0),
teleportation traps (MiniHack-Room-Trap-5x5-v0 and MiniHack-Room-Trap-15x15-v0), dark-
ness (MiniHack-Room-Dark-5x5-v0 and MiniHack-Room-Dark-15x15-v0), or all three combined
(MiniHack-Room-Ultimate-5x5-v0 and MiniHack-Room-Ultimate-15x15-v0). The agent can attack monsters
by moving towards them when located in an adjacent grid cell. Stepping on a lava tile instantly kills the agent. When
the room is dark, the agent can only observe adjacent grid cells.

Examples of the MiniHack-Room-Ultimate-15x15-v0 task:

Reward

The agent receives a reward of +1 for reaching the goal.

34 Chapter 9. Contributions and Maintenance

MiniHack

Source

Source

All Environments

Name Capability
MiniHack-Room-5x5-v0 Basic Learning
MiniHack-Room-15x15-v0 Basic Learning
MiniHack-Room-Random-5x5-v0 Basic Learning
MiniHack-Room-Random-15x15-v0 Basic Learning
MiniHack-Room-Dark-5x5-v0 Basic Learning
MiniHack-Room-Dark-15x15-v0 Basic Learning
MiniHack-Room-Monster-5x5-v0 Basic Learning
MiniHack-Room-Monster-15x15-v0 Basic Learning
MiniHack-Room-Trap-5x5-v0 Basic Learning
MiniHack-Room-Trap-15x15-v0 Basic Learning
MiniHack-Room-Ultimate-5x5-v0 Basic Learning
MiniHack-Room-Ultimate-15x15-v0 Basic Learning

Corridor

These tasks make use of the RANDOM_CORRIDORS command in the des-file. The objective is to reach the staircase
located in one of the randomly generated rooms. The rooms have randomised positions and sizes. The corridors
between the rooms are procedurally generated and are different for every episodes.

Different variants of this environment have different numbers of rooms, making the exploration challenge more difficult
(MiniHack-Corridor-R2-v0, MiniHack-Corridor-R3-v0, and MiniHack-Corridor-R5-v0 environments are
composed of 2, 3, and 5 rooms, respectively).

Examples of the MiniHack-Corridor-R5-v0 task:

9.9. MiniHack Environment Zoo 35

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/room.py

MiniHack

Reward

The agent receives a reward of +1 for reaching the goal.

Source

Source

All Environments

Name Capability
MiniHack-Corridor-R2-v0 Exploration
MiniHack-Corridor-R3-v0 Exploration
MiniHack-Corridor-R5-v0 Exploration

KeyRoom

These tasks require the agent to pickup a key, navigate to a door, and use the key to unlock the door, reaching the
staircase down within the locked room. The action space is the standard movement actions plus the pickup and apply
action.

In the simplest variant of this task, (MiniHack-KeyRoom-Fixed-S5-v0), the location of the key, door and stair-
case are fixed. In the rest of the variants these locations randomised. The size the outer room is 5x5 for
MiniHack-KeyRoom-S5-v0 and 15x15 for MiniHack-KeyRoom-S15-v0. To increase the difficulty of the tasks, dark
versions of the tasks are introduced (MiniHack-KeyRoom-Dark-S5-v0 and MiniHack-KeyRoom-Dark-S15-v0),
where the key cannot be seen if it is not in any of the agent’s adjacent grid cells.

Examples of the MiniHack-KeyRoom-S15-v0 task:

Reward

The agent receives a reward of +1 for reaching the goal located in the locked room.

36 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/corridor.py

MiniHack

Source

Source.

All Environments

Name Capability
MiniHack-KeyRoom-Fixed-S5-v0 Exploration
MiniHack-KeyRoom-S5-v0 Exploration
MiniHack-KeyRoom-Dark-S5-v0 Exploration
MiniHack-KeyRoom-S15-v0 Exploration
MiniHack-KeyRoom-Dark-S15-v0 Exploration

MazeWalk

These navigation tasks make use of the MAZEWALK command in the des-file, which procedurally generates diverse
mazes.

We provide three maze sizes of 9x9, 15x15 and 45x19 grids corresponding to MiniHack-MazeWalk-9x9-v0,
MiniHack-MazeWalk-15x15-v0, and MiniHack-MazeWalk-45x19-v0 environments. In the mapped ver-
sions of these tasks (MiniHack-MazeWalk-Mapped-9x9-v0, MiniHack-MazeWalk-Mapped-15x15-v0, and
MiniHack-MazeWalk-Mapped-45x19-v0), the map of the maze and the goal’s locations are visible to the agent.

Examples of the MiniHack-MazeWalk-15x15-v0 task:

Reward

The agent receives a reward of +1 for reaching the goal.

Source

Source

All environments

Name Capability
MiniHack-MazeWalk-9x9-v0 Exploration & Memory
MiniHack-MazeWalk-Mapped-9x9-v0 Exploration & Memory
MiniHack-MazeWalk-15x15-v0 Exploration & Memory
MiniHack-MazeWalk-Mapped-15x15-v0 Exploration & Memory
MiniHack-MazeWalk-45x19-v0 Exploration & Memory
MiniHack-MazeWalk-Mapped-45x19-v0 Exploration & Memory

9.9. MiniHack Environment Zoo 37

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/keyroom.py
https://github.com/facebookresearch/minihack/blob/main/minihack/envs/mazewalk.py

MiniHack

River

This group of tasks requires the agent to cross a river using boulders and reach the goal located on the other side.
Boulders, when pushed into water, create a dry land to walk on, allowing the agent to cross it.

While the MiniHack-River-Narrow-v0 task can be solved by pushing one boulder into the water, other
MiniHack-River-v0 require the agent plan a sequence of at least two boulder pushes into the river next
to each other. In the more challenging tasks of the group, the agent needs to additionally fight monsters
(MiniHack-River-Monster-v0), avoid pushing boulders into lava rather than water (MiniHack-River-Lava-v0),
or both (MiniHack-River-MonsterLava-v0).

Examples of the MiniHack-River-v0 task:

Reward

The agent receives a reward of +1 for reaching the goal.

Source

Source

All Environments

Name Capability
MiniHack-River-Narrow-v0 Planning
MiniHack-River-v0 Planning
MiniHack-River-Monster-v0 Planning
MiniHack-River-Lava-v0 Planning
MiniHack-River-MonsterLava-v0 Planning

HideNSeek

In these tasks, the agent is spawned in a big room full of trees and clouds. The trees and clouds block the line of sight
of the player and a random monster (chosen to be more powerful than the agent). The agent, monsters and spells can
pass through clouds unobstructed. The agent and monster cannot pass through trees. The goals is to make use of the
environment features, avoid being seen by the monster and quickly run towards the goal. The layout of the map is
procedurally generated, hence requires systematic generalisation.

MiniHack-HideNSeek-v0 is the standard version of the environment. Alternative versions of this environ-
ment additionally include lava tiles that need to be avoided MiniHack-HideNSeek-Lava-v0, have bigger size
MiniHack-HideNSeek-Big-v0, or provide the locations of all environment features but not the powerful monster
MiniHack-HideNSeek-Mapped-v0.

Examples of the MiniHack-HideNSeek-v0 task:

38 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/river.py

MiniHack

Reward

The agent receives a reward of +1 for reaching the goal.

Source

Source

All Environments

Name Capability
MiniHack-HideNSeek-v0 Planning
MiniHack-HideNSeek-Mapped-v0 Planning
MiniHack-HideNSeek-Lava-v0 Planning
MiniHack-HideNSeek-Big-v0 Planning

CorridorBattle

The MiniHack-CorridorBattle-v0 task challenges the agent to make best use of the dungeon features to effectively
defeat a horde of hostile monsters. Here, if the agent lures the rats into the narrow corridor, it can defeat them one at a
time. Fighting in rooms, on the other hand, would result the agent simultaneously incurring damage from several direc-
tions and a quick death. The task also is offered in dark mode (MiniHack-CorridorBattle-Dark-v0), challenging
the agent to remember the number of rats killed in order to plan subsequent actions.

An example of the MiniHack-CorridorBattle-v0 task:

9.9. MiniHack Environment Zoo 39

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/hidenseek.py

MiniHack

Reward

The agent receives a reward of +1 for reaching the goal.

Source

Source

All Environments

Name Capability
MiniHack-CorridorBattle-v0 Planning & Memory
MiniHack-CorridorBattle-Dark-v0 Planning & Memory

Memento

This group of tasks test the agent’s ability to use memory (within an episode) to pick the correct path. The agent is
presented with a prompt (in the form of a sleeping monster of a specific type), and then navigates along a corridor. At
the end of the corridor the agent reaches a fork, and must choose a direction. One direction leads to a grid bug, which if
killed terminates the episode with +1 reward. All other directions lead to failure through a invisible trap that terminates
the episode when activated. The correct path is determined by the cue seen at the beginning of the episode.

We provide three versions of this environment: one with a short corridor before a fork with two paths to choose from
(MiniHack-Memento-Short-F2-v0), one with a long corridor with a two-path fork (MiniHack-Memento-F2-v0),
and one with a long corridor and a four-fork path (MiniHack-Memento-F4-v0).

An example of the MiniHack-Memento-F4-v0 task:

Reward

The agent receives a reward of 1 for killing the grid bug (navigating along the correct corridor) and -1 for stepping on
the trap (naving along the incorrect corridor). Both events terminate the episode.

Source

Source

40 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/fightcorridor.py
https://github.com/facebookresearch/minihack/blob/main/minihack/envs/memento.py

MiniHack

All Environments

Name Capability
MiniHack-Memento-Short-F2-v0 Memory
MiniHack-Memento-F2-v0 Memory
MiniHack-Memento-F4-v0 Memory

MazeExplore

These tasks test the agent’s ability to perform deep exploration. It’s inspired by the Apple-Gold domain from , where
a small reward can be achieved easily, but to learn the optimal policy deeper exploration is required. The agent must
first explore a simple randomised maze to reach the staircase down, which they can take for +1 reward. However, if
they navigate through a further randomised maze, they reach a room with apples. Eating the apples gives +0.5 reward,
and once the apples are eaten the agent should then return to the staircase down.

We provide an easy and a hard version of this task (MazeExplore-Easy-v0 and MiniHack-MazeExplore-Hard-v0),
with the harder version having a larger maze both before and after the staircase down. Variants can also be mapped
(MiniHack-MazeExplore-Easy-Mapped-v0 and MiniHack-MazeExplore-Hard-Mapped-v0), where the agent
can observe the layout of the entire grid, making it easier to navigate the maze. Even in the mapped setting the apples
aren’t visible until the agent reaches the final room.

Examples of the MiniHack-MazeExplore-Hard-v0 task. The apples are located near the right vertical wall (unob-
servable in the figure). The goal is located in the middle area of the grid.

Reward

The agent receives a reward of +1 for reaching the goal and +0.5 for eating an apple.

Source

Source

All Environments

Name Capability
MiniHack-MazeExplore-Easy-v0 Deep Exploration
MiniHack-MazeExplore-Hard-v0 Deep Exploration
MiniHack-MazeExplore-Easy-Mapped-v0 Deep Exploration
MiniHack-MazeExplore-Hard-Mapped-v0 Deep Exploration

9.9. MiniHack Environment Zoo 41

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/exploremaze.py

MiniHack

Environment
Family

Capability Screenshots

Room Basic Learning

Corridor Exploration

KeyRoom Exploration

MazeWalk Exploration &
Memory

River Planning

HideNSeek Planning

CorridorBat-
tle

Planning &
Memory

Memento Memory

MazeExplore Deep Explo-
ration

42 Chapter 9. Contributions and Maintenance

MiniHack

9.9.2 Skill Acquisition Tasks

MiniHack’s skill acquisition tasks enable utilising the rich diversity of NetHack objects, monsters and dungeon features,
and the interactions between them. The skill acquisition tasks feature a large action space (75 actions), where the actions
are instantiated differently depending on which object they are acting on. Note that certain actions in skill acquisition
tasks are factorised autoregresively, i.e., require performing a sequence of follow-up actions for the initial action to have
an effect. For example, to put on a ring, the agent needs to select the PUTON action, choose the ring from the inventory
and select which hand to put it on.

Simple Tasks

The simple skill acquisition tasks require discovering interaction between one object and the actions of the
agent. These include: eating comestibles (MiniHack-Eat-v0), praying on an altar (MiniHack-Pray-v0),
wearing armour (MiniHack-Wear-v0), and kicking locked doors (LockedDoors). In the regular versions
of these tasks, the starting location of the objects and the agent is randomised, whereas in the fixed ver-
sions of these tasks (MiniHack-Eat-Fixed-v0, MiniHack-Pray-Fixed-v0, MiniHack-Wear-Fixed-v0 and
MiniHack-LockedDoors-Fixed-v0) both are fixed. To add a slight complexity to the randomised version of these
tasks, distractions in the form of a random object and a random monster are added to the third version of these tasks
(MiniHack-Eat-Distract-v0, MiniHack-Pray-Distract-v0 and MiniHack-Wear-Distract-v0). These tasks
can be used as building blocks for more advanced skill acquisition tasks.

Examples of MiniHack-Eat-Distract-v0, MiniHack-Wear-Distract-v0 and MiniHack-Pray-Distract-v0
tasks:

Reward

The agent receives a reward of +1 for using the required skill in the given environment, such as eating comestibles in
MiniHack-Eat-v0 or wearing armour in MiniHack-Wear-v0.

Source

Source

9.9. MiniHack Environment Zoo 43

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/skills_simple.py

MiniHack

All Environments

Name Skill
MiniHack-Eat-v0 Confirmation or PickUp + Inventory
MiniHack-Eat-Fixed-v0 Confirmation or PickUp + Inventory
MiniHack-Eat-Distract-v0 Confirmation or PickUp + Inventory
MiniHack-Pray-v0 Confirmation
MiniHack-Pray-Fixed-v0 Confirmation
MiniHack-Pray-Distract-v0 Confirmation
MiniHack-Wear-v0 PickUp + Inventory
MiniHack-Wear-Fixed-v0 PickUp + Inventory
MiniHack-Wear-Distract-v0 PickUp + Inventory
MiniHack-LockedDoor-v0 Direction
MiniHack-LockedDoor-Random-v0 Direction

Lava Crossing

This family of skill acquisition tasks requires crossing a river of lava. The agent can accomplish this by either levitating
over it (via a potion of levitation or levitation boots) or freezing it (by zapping the wand of cold or playing the frost
horn).

In the simplest version of the task (MiniHack-LavaCross-Levitate-Potion-Inv-v0 and
MiniHack-LavaCross-Levitate-Ring-Inv-v0), the agent starts with one of the neces-
sary objects in the inventory. Requiring the agent to pickup the corresponding object first
makes the tasks more challenging (MiniHack-LavaCross-Levitate-Potion-PickUp-v0 and
MiniHack-LavaCross-Levitate-Ring-PickUp-v0). Most difficult variants of this task group require the
agent to cross the lava river using one of the appropriate objects randomly sampled and placed at the random
location. In LMiniHack-avaCross-Levitate-v0, one of the objects of levitation is placed on the map, while in the
MiniHack-LavaCross-v0 task these include all of the objects for levitation as well as freezing.

Five random instances of the MiniHack-LavaCross-v0 task, where the agent needs to cross the lava using (i) potion
of levitation, (ii) ring of levitation, (iii) levitation boots, (iv) frost horn, or (v) wand of cold.

44 Chapter 9. Contributions and Maintenance

MiniHack

Reward

The agent receives a reward of +1 for reaching the goal on the other side of the lava river.

Source

Source

All Environments

Name Skill
MiniHack-LavaCross-Levitate-Ring-Inv-v0 Inventory
MiniHack-LavaCross-Levitate-Potion-Inv-v0 Inventory
MiniHack-LavaCross-Levitate-Ring-Pickup-v0 PickUp + Inventory
MiniHack-LavaCross-Levitate-Potion-PickUp-v0 PickUp + Inventory
MiniHack-LavaCross-Levitate-v0 PickUp + Inventory
MiniHack-LavaCross-v0 PickUp + Inventory

Wand of Death

These environments require mastering the usage of the wand of death (WoD). Zapping a WoD it in any direction fires
a death ray which instantly kills almost any monster it hits.

In MiniHack-WoD-Easy-v0 environment, the agent starts with a WoD in its inventory and needs to zap it towards a
sleeping monster. MiniHack-WoD-Medium-v0 requires the agent pick it up, approach the sleeping monster, kill it, and
go to the staircase. In MiniHack-WoD-Hard-v0 the WoD needs to be found first, only then the agent should enter the
corridor with a monster (who is awake and hostile this time), kill it, and go to the staircase. In the most difficult task of
the sequence, the MiniHack-WoD-Pro-v0, the agent starts inside a big labyrinth. It needs to find the WoD inside the
maze and reach its centre, which is guarded by a deadly Minotaur.

An example of the MiniHack-WoD-Hard-v0 task:

9.9. MiniHack Environment Zoo 45

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/skills_lava.py
https://nethackwiki.com/wiki/Wand_of_death

MiniHack

Reward

The agent receives a reward of +1 for killing the minotaur MiniHack-WoD-Easy-v0. For the other versions, a reward
of +1 is received upon reaching the goal.

Source

Source

All Environments

Name Skill
MiniHack-WoD-Easy-v0 Inventory + Direction
MiniHack-WoD-Medium-v0 PickUp + Inventory + Direction
MiniHack-WoD-Hard-v0 PickUp + Inventory + Direction
MiniHack-WoD-Pro-v0 Navigation + PickUp + Inventory + Direction

Quest

This family of environments features a mini-quest for the agent to complete.

The agents needs to make use of an object is laying around for crossing a lava rivver (this can be any object allowing
levitation or freezing), while fighting monsters and navigating rooms or mazes. Towards the end of the quests, the agent
needs to utlise a wand of death to kill a deadly monster guarding the goal location.

In MiniHack-Quest-Easy-v0, the map layout is relatively simple and fixed. The MiniHack-Quest-Medium-v0 task
features a narrow corridor. The agents needs to lure monsters into a narrow corridor and defeat them one at a time,
before progressing further. In the most challenging version of the task, MiniHack-Quest-Hard-v0, features large
procedurally generated maze which needs to solved first before embarking on the next steps of the quest.

Examples of the MiniHack-Quest-Hard-v0 task:

Reward

The agent receives a reward of +1 for reaching the goal.

46 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/skills_wod.py

MiniHack

Source

Source

All Environments

Name Skill
MiniHack-Quest-Easy-v0 Inventory
MiniHack-Quest-Medium-v0 Navigation + Inventory
MiniHack-Quest-Hard-v0 Navigation + PickUp + Inventory + Direction

Environment
Family

Screenshots

Simple Skills

Lava Crossing

Wand Of Death

Quest

9.9. MiniHack Environment Zoo 47

https://github.com/facebookresearch/minihack/blob/main/minihack/envs/skills_quest.py

MiniHack

9.9.3 Ported tasks

These tasks are ported to MiniHack from other existing benchmarks. Note that there might be substantial differences
in MiniHack versions of these tasks. Despite these, the core capabilities of the tasks should be the same. Furthermore,
some of the tasks have been extended to become more challenging using the entities and environment dynamics of
MiniHack.

MiniGrid

This family of environments is ported to MiniHack from MiniGrid, a popular suite of procedurally generated grid-
based environments that assess various capabilities of RL agents, such as exploration, memory, and generalisation. For
more information, check out MiniGrid’s documentation. After porting environments to MiniHack, one can make them
substantially harder by adding additional environment dynamics to the task, such as monsters, dungeon features and
objects.

The MultiRoom environments have a series of connected rooms. The final room has the goal location the agent needs to
get to. We have ported the MultiRoom in three different room numbers, namely 2, 4 and 6 rooms. Moreover, we added
additional complexity to them by adding monsters (e.g. MiniHack-MultiRoom-N4-Monster-v0), locked doors (e.g.
MiniHack-MultiRoom-N4-Locked-v0), lava tiles instead of walls (e.g. MiniHack-MultiRoom-N4-Lava-v0), or
all at one (e.g. MiniHack-MultiRoom-N4-Extreme-v0).

The LavaCrossing and SimpleCrossing environments require the agent to reach the goal on the other corner in the
same room. In the case of LavaCrossing, there are several lava stream running across the room either horizontally or
vertically, and only have a single crossing point which can be safely used. The agent needs to avoid the lava which
would otherwise it will die immediately. In SimpleCrossing, on the other hand the lava is replaced by the walls. Several
versions of the environments are ported from MiniGrid and provided in the table below.

Note: More tasks could have similarly been ported from MiniGrid. However, our goal was to showcase MiniHack’s
ability to port existing grid-world environments and easily enrich them, rather then porting all possible tasks.

The following figure presents examples of MiniHack-MultiRoom-N4-v0 and
MiniHack-MultiRoom-N4-Extreme-v0 environments rendered using MiniHack’s tiles:

envs/ported/imgs/multiroom.png

Reward

The agent receives a reward of +1 for reaching the goal.

48 Chapter 9. Contributions and Maintenance

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid/blob/master/README.md

MiniHack

Source

Source

All Environments

Name Capability
MiniHack-MultiRoom-N2-v0 Exploration
MiniHack-MultiRoom-N4-v0 Exploration
MiniHack-MultiRoom-N6-v0 Exploration
MiniHack-MultiRoom-N2-Monster-v0 Exploration
MiniHack-MultiRoom-N4-Monster-v0 Exploration
MiniHack-MultiRoom-N6-Monster-v0 Exploration
MiniHack-MultiRoom-N2-Locked-v0 Exploration
MiniHack-MultiRoom-N4-Locked-v0 Exploration
MiniHack-MultiRoom-N6-Locked-v0 Exploration
MiniHack-MultiRoom-N2-Lava-v0 Exploration
MiniHack-MultiRoom-N4-Lava-v0 Exploration
MiniHack-MultiRoom-N6-Lava-v0 Exploration
MiniHack-MultiRoom-N2-Extreme-v0 Exploration
MiniHack-MultiRoom-N4-Extreme-v0 Exploration
MiniHack-MultiRoom-N6-Extreme-v0 Exploration
MiniHack-LavaCrossingS9N1-v0 Exploration
MiniHack-LavaCrossingS9N2-v0 Exploration
MiniHack-LavaCrossingS9N3-v0 Exploration
MiniHack-LavaCrossingS11N5-v0 Exploration
MiniHack-SimpleCrossingS9N1-v0 Exploration
MiniHack-SimpleCrossingS9N2-v0 Exploration
MiniHack-SimpleCrossingS9N3-v0 Exploration
MiniHack-SimpleCrossingS11N5-v0 Exploration

Boxoban

This family of environments is ported to MiniHack from Boxoban, a box-pushing puzzle game inspired by Sokoban.
The goal is to push four boxes (or boulder’s in MiniHack’s version) to four goal locations (fountains).

The procedurally generated levels are divided into three difficulties - Ulfiltered
(MiniHack-Boxoban-Unfiltered-v0), Medium (MiniHack-Boxoban-Medium-v0), and Hard
(MiniHack-Boxoban-Hard-v0).

An example of Boxoban level ported into MiniHack.

envs/ported/imgs/boxoban.png

9.9. MiniHack Environment Zoo 49

https://github.com/facebookresearch/minihack/tree/main/minihack/envs/minigrid.py
https://github.com/deepmind/boxoban-levels

MiniHack

Reward

The agent receives a reward of +1 for pushing all boulders to different goal positions. The agent additional receives a
shaped reward of +0.1 for each pushing each boulder to a goal position and -0.1 penalty for moving it out of there.

Source

Source

All Environments

Name Capability
MiniHack-Boxoban-Unfiltered-v0 Planning
MiniHack-Boxoban-Medium-v0 Planning
MiniHack-Boxoban-Hard-v0 Planning

50 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/minihack/tree/main/minihack/envs/boxohack.py

MiniHack

Environment
Family

Screenshots

MiniGrid

Boxoban

NetHack
Sokoban

9.9. MiniHack Environment Zoo 51

MiniHack

9.10 Submitting New Environments

For submitting a new environment to MiniHack Environment Zoo, open a Pull Request on GitHub that includes the
following:

• The .py file implementing the environment should be put into minihack/envs directory (with appropriate reg-
istration).

• If the environment includes a .des file, please put it into the minihack/dat directory.

• The description of the environment should reside in the docs/envs directory

– Create a separate markdown file in the corresponding directory (navigation, skills or ported) de-
scribing the environment (and its possible variations), its objective, capabilities it assesses, reward, action
space used, as well as the link to the source code.

– Include a screenshot of the environment in docs/envs/imgs directory.

– Update the tables (both Markdown table and {toctree} block) in docs/envs/index.md to reference your
new environment (or family of environments).

We look forward to accepting diverse environment contributions from the community.

9.11 des-file format: A tutorial

Note: This tutorial assumes a small amount of knowledge of NetHack. Skimming through the community tutorial on
des-file format would also be helpful.

Note: In case you are viewing the static version of this tutorial, the interactive version can be found here.

9.11.1 What is a des-file?

A des-file is a file which describes a level in the game of NetHack. In MiniHack, we use des-files to easily define
new environments. The des-files are specified in a human-readable domain-specific language (DSL), which has some
powerful probabilistic features which enable easy specification of interesting distributions of levels in only a few lines.
While there are many features of these files and the DSL used to specify them, in this tutorial we will highlight the
most relevant ones, which are most useful for designing environments for RL research.

9.11.2 The Two Types of des-files: MAZE and ROOM

There are two types of des-file, which have different properties in terms of how they define the layout of the level: * The
ROOM-type des-file works by specifying a collection of ROOMs, possibly with SUBROOMs. Any of these rooms and
subrooms can have their contents specified, as well as their approximate location and exact size. These rooms are then
randomly places (loosely obeying the approximate location) on the map. Generally, the RANDOM_CORRIDORS
command is then used to create random corridors enabling access to all the rooms on the map. * The MAZE-type
des-file offers more control over defining the layout of the level. The layout can be “drawn” with ascii characters, and
then contents can be specified to occupy certain locations on the level. The layout specified could only occupy part of
the map, with the other parts being randomly generated.

[1]: # Importing helper visualisation functions
from minihack.tiles.rendering import get_des_file_rendering

import IPython.display
(continues on next page)

52 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/minihack
https://github.com/facebookresearch/minihack/blob/main/minihack/envs/__init__.py#L7
https://github.com/facebookresearch/minihack/blob/main/minihack/envs/__init__.py#L7
https://en.wikipedia.org/wiki/NetHack
https://nethackwiki.com/wiki/Des-file_format
https://github.com/facebookresearch/minihack/blob/main/docs/tutorials/des_file_tutorial.ipynb

MiniHack

(continued from previous page)

def render_des_file(des_file, **kwargs):
image = get_des_file_rendering(des_file, **kwargs)
IPython.display.display(image)

MAZE-type levels

Let’s look at a simple MAZE-type des-file:

[2]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
.....
.....
.....
.....
.....
ENDMAP
"""
render_des_file(des_file, n_images=1, full_screen=False)

Here we can already see some basic structure of the des-file. The first line specifies the type (either MAZE: for maze-
type or LEVEL: for room-type). The second line specifies a possible list of flags to apply to the level. Here we’re
using premapped so we can easily visualise the entire level. GEOMETRY determines where the following MAP definition
will be on the whole screen, and MAP defines the map itself. . is a floor tile, and everything not specified becomes
impassable rock.

Let’s experiment with GEOMETRY to see what it does:

[3]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:{},{}
MAP
.....
.....
.....
.....
.....
ENDMAP
"""
for geom_x, geom_y in [("left", "top"), ("center", "center"), ("right", "bottom")]:

print("Levels with geometry: GEOMETRY:{},{}".format(geom_x, geom_y))
render_des_file(des_file.format(geom_x, geom_y), n_images=3, full_screen=True)

9.11. des-file format: A tutorial 53

MiniHack

Levels with geometry: GEOMETRY:left,top

Levels with geometry: GEOMETRY:center,center

Levels with geometry: GEOMETRY:right,bottom

Lets try making the map a bit more interesting. Feel free to play around and make an interesting design. Some
constraints: all lines must be the same length (you can use spaces to fill up the ends of lines if you want), and the whole
maze must be within 79 x 21 size

[4]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
.....
...............
...............
...............
.....
ENDMAP
"""
render_des_file(des_file, n_images=3)

So far we’ve just changed the shape of the map, but what about making it out of something other than floor and walls?
You can use any of the map characters defined in the des-file format; see here for the full list. For example, we could
add a sink, some trees, a door, and some walls

[5]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
|----- ------
|.....-- --.....|
|.T.T...-....K..|
|.......+.......|

(continues on next page)

54 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Des-file_format#Map_characters

MiniHack

(continued from previous page)

|.T.T...-.......|
|.....-----.....|
|----- ------
ENDMAP
"""
render_des_file(des_file, n_images=3, full_screen=False)

A good thing about MAZE levels is you can specify the starting point of the agent explicitly, using the BRANCH com-
mand. This command takes in two regions as input, and spawns the agent somewhere in the first region, as long as it’s
not in the second region. If you want the agent to spawn in a single spot, you can just pass the same coordinates twice.
In the previous maps the agent has been spawning in a random location - lets try and spawn them in the middle of the
four trees.

[6]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
|----- ------
|.....-- --.....|
|.T.T...-....K..|
|.......+.......|
|.T.T...-.......|
|.....-----.....|
|----- ------
ENDMAP
BRANCH: (3,3,3,3),(4,4,4,4)
"""
render_des_file(des_file, n_images=3, full_screen=False)

ROOM-type levels

Let’s look at a simple ROOM-type des-file:

[7]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped

ROOM: "ordinary" , lit, random, random, random {
}

(continues on next page)

9.11. des-file format: A tutorial 55

MiniHack

(continued from previous page)

ROOM: "ordinary" , lit, random, random, random {
}

RANDOM_CORRIDORS
"""
render_des_file(des_file, n_images=3, full_screen=True)

This has a similar structure in the beginning of the file to the MAZE-type levels, using flags to specify some options.
After that, several ROOMs are defined. The arguments to the ROOM command are:

• type, which specifies the type of room (generally we’ll just want ordinary)

• lit or unlit - this controls how far the agent can see in the room

• position, a tuple with values between 1 and 5 which roughly specifies the room location

• align, a tuple of xalign and yalign. This specifies the alignment of the room within the position defined above

– xalign is one of left, half-left, center, half-right, right or random

– yalign is one of top, center, bottom or random.

• size, a tuple of (height, width).

Any of these can be left as random, which means they’re randomly chosen.

Let’s experiments with each of these arguments in turn, to get an idea of what they do to just one room:

[8]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped
ROOM: "ordinary" , lit, random, random, random {
}
RANDOM_CORRIDORS
"""
render_des_file(des_file, n_images=3, full_screen=True)

[9]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped

ROOM: "ordinary" , lit, (XX,YY), random, random {
}

RANDOM_CORRIDORS
"""
for x,y in [(1,1), (1,5), (5,1), (5,5)]:

(continues on next page)

56 Chapter 9. Contributions and Maintenance

MiniHack

(continued from previous page)

print("Room placed with position: ", x, ",", y)
render_des_file(des_file.replace("XX", str(x)).replace("YY", str(y)), n_images=3,␣

→˓full_screen=True)

Room placed with position: 1 , 1

Room placed with position: 1 , 5

Room placed with position: 5 , 1

Room placed with position: 5 , 5

[10]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped

ROOM: "ordinary" , lit, (3,3), (xalign,yalign), (10,10) {
}

RANDOM_CORRIDORS
"""
for xalign,yalign in [("left", "top"), ("right", "top"), ("right", "bottom"), ("center",
→˓"center")]:

print("Room placed with align: ", xalign, ",", yalign)
render_des_file(des_file.replace("xalign", xalign).replace("yalign", yalign), n_

→˓images=3, full_screen=True)

Room placed with align: left , top

Room placed with align: right , top

9.11. des-file format: A tutorial 57

MiniHack

Room placed with align: right , bottom

Room placed with align: center , center

When defining a ROOM-type level, we can also place subrooms within rooms. These subrooms are initialised in a
similar way to ROOMs

[11]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped

ROOM: "ordinary" , lit, (3,3), (center,center), (5,5) {
SUBROOM: "ordinary", lit, (0,0), (2,2) {
}

}

RANDOM_CORRIDORS
"""
render_des_file(des_file, n_images=3, full_screen=False)

Finally, we should probably explain the RANDOM_CORRIDORS command. This command creates random corridors
between all the rooms. Look what happens if we don’t include it (we won’t be able to get between the rooms).

[12]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped

ROOM: "ordinary" , lit, random, random, random {
}
ROOM: "ordinary" , lit, random, random, random {
}
"""
render_des_file(des_file, n_images=3, full_screen=True)

58 Chapter 9. Contributions and Maintenance

MiniHack

9.11.3 Adding complexity: Monsters, Objects & Traps

While making nice mazes or rooms is all well and good, we want our agents to tackle more interesting challenges. This
is where we start to draw on the richness of the game of NetHack; specifically, we’ll see how to add monsters, objects
and traps to the levels we’ve defined. These commands work the same for both ROOM and MAZE type levels, with
one nuance when defining the location of these entities: in MAZE-type levels, the coordinates given are relative to the
most recent MAP definintion; for ROOM-type levels, they’re relative to the ROOM containing the entity being added.

Let’s see how to add a monster to our 2-room environment from earlier (we’ve added a lit region covering the whole
map, so that we can see what’s happening everywhere):

[13]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped
REGION: (0,0,20,80), lit, "ordinary"

ROOM: "ordinary" , lit, random, random, random {
MONSTER: random, random

}
ROOM: "ordinary" , lit, random, random, random {

MONSTER: ('F', "lichen"), random
}
ROOM: "ordinary" , lit, random, random, random {

MONSTER: ('F', "red mold"), (0,0)
}

RANDOM_CORRIDORS
"""
render_des_file(des_file, n_images=3, full_screen=True)

We can specify the monster type with a tuple of class and name (e.g. ('F', "lichen")), or leave it random. Similarly
with the location, we can leave it random or specify it, as we did in the last room.

Adding traps is very similar to adding monsters, apart from we just need the trap name rather than the tuple of name
and class:

[14]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped
REGION: (0,0,20,80), lit, "ordinary"

ROOM: "ordinary" , lit, random, random, random {
TRAP: random, random

}
ROOM: "ordinary" , lit, random, random, random {

TRAP:"fire", random
}
ROOM: "ordinary" , lit, random, random, random {

TRAP:"hole",(0,0)
}

(continues on next page)

9.11. des-file format: A tutorial 59

MiniHack

(continued from previous page)

RANDOM_CORRIDORS
"""
render_des_file(des_file, n_images=3, full_screen=True)

As well as monsters and traps, there are many objects in the game of NetHack that we can add to our level. We can
specify the type, the location, and for certain objects extra arguments can be passed specific to that object (e.g. the
status or the monster egg).

[15]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped
REGION: (0,0,20,80), lit, "ordinary"

ROOM: "ordinary", lit, random, (center,center), (15,15) {
OBJECT:('%', "food ration"), random
OBJECT:'*', (10,10)
OBJECT :('"', "amulet of life saving"), random
OBJECT:('%', "corpse"), random
OBJECT:('`', "statue"), (0,0), montype:"forest centaur", 1
OBJECT:('(', "crystal ball"), (17,08), blessed, 5,name:"The Orb of Fate"
OBJECT:('%',"egg"), (05,04), montype:"yellow dragon"

}

RANDOM_CORRIDORS
"""
render_des_file(des_file, n_images=3)

As well as objects placed with OBJECT, there are several terrain features it’s worth knowing about: SINK, FOUNTAIN,
ALTAR, and STAIR. Stairs down are normally the objective for the level, as they lead deeper into the dungeon (unless
you specify your own).

[16]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped
REGION: (0,0,20,80), lit, "ordinary"

(continues on next page)

60 Chapter 9. Contributions and Maintenance

MiniHack

(continued from previous page)

ROOM: "ordinary" , lit, random, random, random {
SINK: random
FOUNTAIN: random
ALTAR: random, random, random
STAIR: random, down

}

RANDOM_CORRIDORS
"""
render_des_file(des_file, n_images=3, full_screen=True)

Landscaping Terrain: selections and coordinates

So far we’ve seen how to create rooms and mazes, and add objects, traps and monsters to those rooms. Now we come to
another way to add complexity to your environments: terrain. This takes the form of static objects or structures in the
environment (such as trees, clouds, water and lava), all of which have different properties. When placing these pieces
of terrain, we control their location exactly or leave it entirely to chance (in a similar way as for monsters, objects and
traps). There’s also a third option, which enables us to specify complex selections (sets of coordinates) and randomly
place terrain within these selections.

First, lets look at the basic types of terrain:

[17]: des_file = """
LEVEL: "mylevel"
FLAGS: premapped
REGION: (0,0,20,80), lit, "ordinary"

ROOM: "ordinary" , lit, (3,3), random, (10,10) {
TERRAIN: (5,5), '%terrain%'
TERRAIN: (5,6), '%terrain%'
TERRAIN: (5,7), '%terrain%'
TERRAIN: random, '%terrain%'
TERRAIN: random, '%terrain%'
TERRAIN: random, '%terrain%'

}

RANDOM_CORRIDORS
"""

Terrains = [
" ", # solid wall
"#", # corridor
".", # room floor (Unlit, unless lit with REGION-command)
"-", # horizontal wall
"|", # vertical wall
"+", # door (State is defined with DOOR -command)

(continues on next page)

9.11. des-file format: A tutorial 61

MiniHack

(continued from previous page)

"A", # air
"B", # crosswall / boundary symbol hack (See REGION)
"C", # cloud
"S", # secret door
"H", # secret corridor
"{", # fountain
"\\", # throne
"K", # sink
"}", # moat
"P", # pool of water
"L", # lava pool
"I", # ice
"W", # water
"T", # tree
"F", # iron bars

]

for terrain in Terrains:
render_des_file(des_file.replace("%terrain%", terrain), n_images=3, full_

→˓screen=False)

62 Chapter 9. Contributions and Maintenance

MiniHack

9.11. des-file format: A tutorial 63

MiniHack

64 Chapter 9. Contributions and Maintenance

MiniHack

9.11. des-file format: A tutorial 65

MiniHack

66 Chapter 9. Contributions and Maintenance

MiniHack

Adding terrain in fixed or entirely random places is great, but what if we want to control where the terrain is placed?
For these we can use selections. These are collections of coordinates that can be combined, and then randomly se-
lected from to place terrain. We can also use the selections without randomness to put terrain in an entire location.
There are several ways of creating these selections. rect takes a region (specified by (x_left, y_left, x_right,
y_right) specifying the top left and bottom right corners) and returns selection of coordinates on the edge of the
rectangle. fillrect returns the entire filled rectangle coordinates

[18]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
...............
...............
...............

(continues on next page)

9.11. des-file format: A tutorial 67

MiniHack

(continued from previous page)

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............
ENDMAP
REGION: (0,0,20,20), lit, "ordinary"

$left = selection: %rect% (0,0,6,14)
$right = selection: %rect% (8,0,14,14)

TERRAIN: $left, 'T'
TERRAIN: $right, 'C'

"""
for rect in ("fillrect", "rect"):

print(f"Using {rect}")
render_des_file(des_file.replace("%rect%", rect), n_images=3)

Using fillrect

Using rect

68 Chapter 9. Contributions and Maintenance

MiniHack

We can select a single coordinate out of a selection using rndcoord as follows:

[19]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
ENDMAP
REGION: (0,0,20,20), lit, "ordinary"

$left = selection: fillrect (0,0,6,14)
$right = selection: fillrect (8,0,14,14)

TERRAIN: rndcoord($left), 'T'
TERRAIN: rndcoord($left), 'T'
TERRAIN: rndcoord($left), 'T'
TERRAIN: rndcoord($right), 'C'
TERRAIN: rndcoord($right), 'C'
TERRAIN: rndcoord($right), 'C'

"""
render_des_file(des_file.replace("%rect%", rect), n_images=3)

9.11. des-file format: A tutorial 69

MiniHack

We can also use the REPLACE_TERRAIN command, rather than just the TERRAIN command. This command takes a
region, a terrain to replace, a terrain to replace with, and a probability (specified in a percentage), and then replaces
each tile of the terrain to replace in the region with the terrain to replace with with the probability specified. Below, we
randomly place some trees in the top left and clouds in the top right (by replacing floor), fill the bottom with lava and
then randomly replace some of the laval with ice.

[20]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
ENDMAP
REGION: (0,0,20,20), lit, "ordinary"

$top_left_region = (0,0,6,6)
$top_right_region = (8,0,14,6)
$bottom_region = (0,8,14,14)

REPLACE_TERRAIN: $top_left_region, '.', 'T', 20%
REPLACE_TERRAIN: $top_right_region, '.', 'C', 20%

TERRAIN: fillrect $bottom_region, 'L'
REPLACE_TERRAIN: $bottom_region, 'L','I', 50%

(continues on next page)

70 Chapter 9. Contributions and Maintenance

MiniHack

(continued from previous page)

"""
render_des_file(des_file, n_images=3)

Another way of generating selections (instead of rect or fillrect) is using line or randline. These both take a
start and end position, and randline also takes a roughness parameter controlling how random the line is between the
two coordinates. Here we generate a straight line of trees using line, and several different random lines of clouds with
different roughnesses using randline

[21]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
ENDMAP
REGION: (0,0,20,20), lit, "ordinary"

$top_left = (0,0)
$top_right = (14,0)
$bottom_middle = (7,14)

$tree_line = selection: line $top_left,$bottom_middle
$cloud_line = selection: randline $top_right,$bottom_middle,%roughness%

TERRAIN: $tree_line, 'T'
(continues on next page)

9.11. des-file format: A tutorial 71

MiniHack

(continued from previous page)

TERRAIN: $cloud_line, 'C'

"""
for roughness in (0,5,15,30):

print(f"Using roughness {roughness}")
render_des_file(des_file.replace("%roughness%", str(roughness)), n_images=3)

Using roughness 0

Using roughness 5

Using roughness 15

72 Chapter 9. Contributions and Maintenance

MiniHack

Using roughness 30

More information on different types of selections can be found in the nethack wiki here

Controlling Randomness

As we’ve seen so far, there are many different ways of controlling randomness in des-files. We’ll cover them all in this
section:

• randline and rndcoord we’ve already seen. They’re ways of creating random selections or coordinates given
some input

• The des-file format supports conditional statements using the IF[...] command. Inside the square brackets can
either be a percentage (e.g. IF[50%]) or a comparison (e.g. IF[4 < $variable])

• dice-rolls can be used to generate random integers. They take the form MdN, which means to roll M N-sided die
and sum the result (e.g. 2d4). These can be used in IF statements, like IF[2d4 < 6], or any other place an
integer is used.

• Arrays can be created in des-files, supporting lists of any object of the same type. The SHUFFLE command can
be used to randomise the order of a list after it’s been created, and then the list can be accessed by index to get a
random element.

Here we use IF[%50] conditionals to place either trees or clouds on the left of the map, and dice-rolls to randomly
place lava or ice on the right. We use shuffle to randomly pick one monster, and a dice-roll to randomly pick another

[22]: des_file = """
MAZE: "mylevel", ' '
FLAGS:premapped
GEOMETRY:center,center
MAP
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
ENDMAP

(continues on next page)

9.11. des-file format: A tutorial 73

https://nethackwiki.com/wiki/Des-file_format#Terrain_selections

MiniHack

(continued from previous page)

REGION: (0,0,20,20), lit, "ordinary"

$left = selection: fillrect (0,0,1,10)
$right = selection: fillrect (9,0,10,10)

IF [50%] {
TERRAIN: $left, 'T'

} ELSE {
TERRAIN: $left, 'C'

}

$roll = 2d6
IF [$roll < 7] {

TERRAIN: $right, 'I'
} ELSE {

TERRAIN: $right, 'L'
}

$mon_names = monster: { "Archon", "arch-lich", "vampire lord", "minotaur"}
SHUFFLE: $mon_names
MONSTER: $mon_names[0], (5,2), hostile

$mon_names_new = monster: { "Lich", "grid bug", "hell hound", "red mold"}
$mon_index = 1d4
MONSTER: $mon_names_new[$mon_index], (5,8), hostile
"""
render_des_file(des_file, n_images=12)

74 Chapter 9. Contributions and Maintenance

MiniHack

9.11. des-file format: A tutorial 75

MiniHack

9.11.4 Wrapping up

That brings us to the end of our tutorial. There are more features of NetHack to explore, and we recommend using
the NetHack wiki as a useful source of information. Be sure to use MiniHack and the des-file format to create lots of
interesting reinforcement learning environments.

9.12 TorchBeast

To get started with MiniHack environments, we provide baseline agents using the TorchBeast framework. TorchBeast
provides a PyTorch implementation of IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures.

TorchBeast comes in two variants: MonoBeast and PolyBeast. PolyBeast is the more powerful version of the framework
and allows training agents across multiple machines. For further details, see the TorchBeast paper.

For MiniHack, we use the PolyBeast implementation of TorchBeast and additionally provide an implementation of the
following exploration methods:

• RND: Exploration by Random Network Distillation

• RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments

9.12.1 Installation

To install and train a polybeast agent in MiniHack, first install polybeast by following the instructions here, then use
the following commands:

pip install ".[polybeast]"
Test IMPALA run
python3 -m minihack.agent.polybeast.polyhydra env=MiniHack-Room-5x5-v0 total_steps=100000

9.12.2 Running Experiments

We use the hydra framework for configuring our experiments. All environment and training parameters can be specified
using command line arguments (or edited directly in config.yaml). See config.yaml file in minihack.agent.
polybeast for more information. Be sure to set up appropriate parameters for logging with wandb (disabled by
default).

Single IMPALA run
python3 -m minihack.agent.polybeast.polyhydra model=baseline env=MiniHack-Room-5x5-v0␣
→˓total_steps=1000000

Single RND run
python3 -m minihack.agent.polybeast.polyhydra model=rnd env=MiniHack-Room-5x5-v0 total_
→˓steps=1000000

Single RND run
python3 -m minihack.agent.polybeast.polyhydra model=ride state_counter=coordinates␣
→˓env=MiniHack-Room-5x5-v0 total_steps=1000000

(continues on next page)

76 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/torchbeast
https://pytorch.org/
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1910.03552
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2002.12292
https://github.com/facebookresearch/torchbeast#installing-polybeast
https://github.com/facebookresearch/hydra
https://wandb.ai/site

MiniHack

(continued from previous page)

To perform a sweep on the cluster: add another --multirun command and comma-separate␣
→˓values
python3 -m minihack.agent.polybeast.polyhydra --multirun model=baseline,rnd env=MiniHack-
→˓Room-Random-15x15-v0,MiniHack-Room-Monster-15x15-v0 total_steps=10000000

9.12.3 Replicating the Results of the Paper

To replicate results of the paper performed using polybeast, simply run a sweep of 5 runs with IMPALA, RND or RIDE
agents on the desired environments as follows:

python3 -m minihack.agent.polybeast.polyhydra --multirun model=baseline name=1,2,3,4,5␣
→˓env=MiniHack-Room-Random-15x15-v0,MiniHack-Room-Monster-15x15-v0 total_steps=10000000

For navigation tasks, the default parameters are already set. For skill acquisition tasks, additionally set
learning_rate=0.00005 msg.model=lt_cnn.

The learning curves for all of our polybeast experiments can be accessed in our Weights&Biases repository.

9.12.4 Evaluate and Watch

The following script allows to evaluate the performance of a model pre-trained with polybeast:

Watch the learned behaviour step-by-step in the terminal
python3 -m minihack.agent.polybeast.evaluate --env MiniHack-Room-5x5-v0 -c /path/to/
→˓checkpoint/directory --watch

Evaluate the pre-trained model for 1 episode and save the replay as a GIF file
python3 -m minihack.agent.polybeast.evaluate --env MiniHack-Room-5x5-v0 -c /path/to/
→˓checkpoint/directory -n 1 --no-watch --save_gif --gif_path replay.gif

Print all options of the evaluation script
python3 -m minihack.agent.polybeast.evaluate --help

9.13 RLlib

MiniHack additionally provides support for agents using the RLlib library. RLlib is an open-source library for rein-
forcement learning that offers high scalability and a unified API for a variety of applications. RLlib natively supports
TensorFlow, TensorFlow Eager, and PyTorch. RLlib includes implementations of many popular algorithms, including
IMPALA, PPO, Rainbow DQN, A3C, and many more. The full list of algorithms is available here.

For further details, checkout out RLlib paper and blog post.

9.13. RLlib 77

https://wandb.ai/minihack
https://docs.ray.io/en/latest/rllib.html
https://docs.ray.io/en/latest/rllib-toc.html#algorithms
https://arxiv.org/abs/1712.09381
https://docs.ray.io/en/latest/rllib-examples.html#blog-posts

MiniHack

9.13.1 Installation

To install and train an RLlib agent use the following commands:

pip install -e ".[rllib]"
Test DQN run
python3 -m minihack.agent.rllib.train algo=dqn env=MiniHack-Room-5x5-v0 total_
→˓steps=1000000 lr=0.000001

9.13.2 Running Experiments

We use the hydra framework for configuring our experiments. All environment and training parameters can be specified
using command line arguments (or edited directly in config.yaml). See config.yaml file in minihack.agent.
rllib for more information. Be sure to set up appropriate parameters for logging with wandb (disabled by default).

Single A2C run
python3 -m minihack.agent.rllib.train algo=a2c env=MiniHack-Room-15x15-v0 total_
→˓steps=1000000 a2c.entropy_coeff=0.001 lr=0.00001

Single PPO run
python3 -m minihack.agent.rllib.train algo=ppo env=MiniHack-Room-15x15-v0 total_
→˓steps=1000000 ppo.entropy_coeff=0.0001 lr=0.00001

Single DQN run
python3 -m minihack.agent.rllib.train algo=dqn env=MiniHack-Room-15x15-v0 total_
→˓steps=1000000 dqn.buffer_size=100000 lr=0.000001

To perform a sweep on the cluster: add another --multirun command and comma-separate␣
→˓values
python3 -m minihack.agent.rllib.train --multirun algo=a2c env=MiniHack-Room-15x15-v0␣
→˓lr=0.00001 seed=0,1,2,3,4 total_steps=5000000

9.14 Unsupervised Environment Design

MiniHack also enables research in Unsupervised Environment Design, whereby an adaptive task distribution is learned
during training by dynamically adjusting free parameters of the task MDP.

Check out the ucl-dark/paired repository for replicating the examples from the paper using the PAIRED.

9.15 minihack package

class minihack.LevelGenerator(map=None, w=8, h=8, fill='.', lit=True, flags=('hardfloor'), solidfill=' ')
Bases: object

LevelGenerator provides a convenient Python interface for quickly writing description files for MiniHack. The
LevelGenerator class can be used to create MAZE-type levels with specified heights and widths, and can then
fill those levels with objects, monsters and terrain, and specify the start point of the level.

Parameters

78 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/hydra
https://wandb.ai/site
https://github.com/ucl-dark/paired
https://arxiv.org/abs/2012.02096

MiniHack

• map (str or None) – The description of the map block of the environment. If None, the
map will have a rectangle layout with the given height and width. Defaults to None.

• w (int) – The width of map. Only used when map=None. Defaults to 8.

• h (int) – The height of map. Only used when map=None. Defaults to 8.

• fill (str) – A character describing the environment feature that fills the map. Only used
when map=None. Defaults to “.”, which corresponds to floor.

• lit (bool) – Whether the layout is lit or not. This affects the observations the agent will
receive. If an area is not lit, the agent can only see directly adjacent grids. Defaults to True.

• flags (tuple) – Flags of the environment. For the full list, see https://nethackwiki.com/
wiki/Des-file_format#FLAGS. Defaults to (“hardfloor”,).

• solidfill (str) – A character describing the environment feature used for filling solid /
unspecified parts of the map. Defaults to ” “, which corresponds to solid wall.

__init__(map=None, w=8, h=8, fill='.', lit=True, flags=('hardfloor'), solidfill=' ')
Initialize self. See help(type(self)) for accurate signature.

add_altar(place=None, align='random', type='random')
Add an altar.

Parameters

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

• align (str) – The alignment. Possible values are “noalign”, “law”, “neutral”, “chaos”,
“coaligned”, “noncoaligned”, and “random”. Defaults to “random”.

• type (str) – The type of the altar. Possible values are “sanctum”, “shrine”, “altar”, and
“random”. Defaults to random.

add_boulder(place=None)
Add a boulder to the floor.

Parameters

• amount (int) – The amount of gold.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_door(state, place=None)
Add a door.

Parameters

• state (str) – The state of the door. Possible values are “locked”, “closed”, “open”,
“nodoor”, and “random”. Defaults to “random”.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_fountain(place=None)
Add a fountain.

9.15. minihack package 79

https://nethackwiki.com/wiki/Des-file_format#FLAGS
https://nethackwiki.com/wiki/Des-file_format#FLAGS

MiniHack

Parameters place (None, tuple or str) – The place of the added object. If None, the loca-
tion is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_goal_pos(place=None)
Add a goal at the given place. Same as add_stair_down.

add_gold(amount, place=None)
Add gold on the floor.

Parameters

• amount (int) – The amount of gold.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_line(str)
Add a custom string to the buttom of the description file.

Parameters str (str) – The string to be concatenated to the des-file.

add_mazewalk(coord=None, dir='east')
Creates a random maze, starting from the given coordinate.

Mazewalk turns map grids with solid stone into floor. From the starting position, it checks the mapgrid in
the direction given, and if it’s solid stone, it will move there, and turn that place into floor. Then it will
choose a random direction, jump over the nearest mapgrid in that direction, and check the next mapgrid
for solid stone. If there is solid stone, mazewalk will move that direction, changing that place and the
intervening mapgrid to floor. Normally the generated maze will not have any loops.

Pointing mazewalk at that will create a small maze of trees, but unless the map (at the place where it’s
put into the level) is surrounded by something else than solid stone, mazewalk will get out of that MAP.
Substituting floor characters for some of the trees “in the maze” will make loops in the maze, which are not
otherwise possible. Substituting floor characters for some of the trees at the edges of the map will make
maze entrances and exits at those places.

For more details see https://nethackwiki.com/wiki/Des-file_format#MAZEWALK.

Parameters coord – A tuple with length two representing the (x, y) coordinates. If None is
passed, the middle point of the map is selected. Defaults to None.

add_monster(name='random', symbol=None, place=None, args=())
Add a monster to the map.

Parameters

• name (str) – The name of the monster. Defaults to random.

• symbol (str or None) – The symbol of the monster. The symbol should correspond
to the family of the specified mosnter. For example, “d” symbol corresponds to canine
monsters, so the name of the object should also correspond to canines (e.g. jackal). Not
used when name is “random”. Defaults to None.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

• args (tuple) – Additional monster arguments, e.g. “hostile” or “peaceful”, “asleep”
or “awake”, etc. For more details, see https://nethackwiki.com/wiki/Des-file_format#
MONSTER.

80 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Des-file_format#MAZEWALK
https://nethackwiki.com/wiki/Des-file_format#MONSTER
https://nethackwiki.com/wiki/Des-file_format#MONSTER

MiniHack

add_object(name='random', symbol='%', place=None, cursestate=None)
Add an object to the map.

Parameters

• name (str) – The name of the object. Defaults to random.

• symbol (str) – The symbol of the object. The symbol should correspond to the given ob-
ject name. For example, “%” symbol corresponds to comestibles, so the name of the object
should also correspond to commestibles (e.g. apple). Not used when name is “random”.
Defaults to “%”.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

• cursetstate (str or None) – The cursed state of the object. Can be “blessed”, “un-
cursed”, “cursed” or “random”. Defaults to None (not used).

add_object_area(area_name, name='random', symbol='%', cursestate=None)
Add an object in an area of the map defined by area_name variable. See add_object for more details.

add_sink(place=None)
Add a sink.

Parameters place (None, tuple or str) – The place of the added object. If None, the loca-
tion is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_stair_down(place=None)
Add a stair down at the given place.

Parameters place (None, tuple or str) – The place of the added object. If None, the loca-
tion is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_terrain(coord, flag, in_footer=False)
Add terrain features to the map.

Parameters

• coord (tuple) – A tuple with length two representing the (x, y) coordinates.

• flag (str) – The flag corresponding to the desired terrain feature. Should belong to mini-
hack.level_generator.MAP_CHARS. For more details, see https://nethackwiki.com/wiki/
Des-file_format#Map_characters

• in_footer (bool) – Whether to define the terrain feature as an additional line in the de-
scription file (True) or directly modify the map block with the given flag (False). Defaults
to False.

add_trap(name='teleport', place=None)
Add a trap.

Parameters

• name (str) – The name of the trap. For possible values, see mini-
hack.level_generator.TRAP_NAMES. Defaults to “teleport”.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

9.15. minihack package 81

https://nethackwiki.com/wiki/Des-file_format#Map_characters
https://nethackwiki.com/wiki/Des-file_format#Map_characters

MiniHack

fill_terrain(type, flag, x1, y1, x2, y2)
Fill the areas between (x1, y1) and (x2, y2) with the given dungeon feature:

Parameters

• type (str) – The type of filling. “rect” indicates an unfilled rectangle, containing just
the edges and none of the interior points. “fillrect” denotes filled rectangle containing the
edges and all of the interior points. “line” is used for a straight line drawn from one pair of
coordinates to the other using Bresenham’s line algorithm.

• flag (str) – The flag corresponding to the desired terrain feature. Should belong to mini-
hack.level_generator.MAP_CHARS. For more details, see https://nethackwiki.com/wiki/
Des-file_format#Map_characters

• x1 (int) – x coordinate of point 1.

• y1 (int) – y coordinate of point 1.

• x2 (int) – x coordinate of point 2.

• y2 (int) – y coordinate of point 2.

get_des()
Returns the description file.

Returns the description file as a string.

Return type str

get_map_array()
Returns the map as a two-dimensional numpy array.

get_map_str()
Returns the map as a string.

init_map(map=None, x=8, y=8, fill='.')
Initialise the map block of the des-file.

set_area_variable(var_name, type, x1, y1, x2, y2)
Set a variable representing an area on the map.

Parameters

• var_name (str) – The name of the variable.

• type (str) – The type of filling. “rect” indicates an unfilled rectangle, containing just
the edges and none of the interior points. “fillrect” denotes filled rectangle containing the
edges and all of the interior points. “line” is used for a straight line drawn from one pair of
coordinates to the other using Bresenham’s line algorithm.

• x1 (int) – x coordinate of point 1.

• y1 (int) – y coordinate of point 1.

• x2 (int) – x coordinate of point 2.

• y2 (int) – y coordinate of point 2.

set_start_pos(coord)
Set the starting position of the agent.

Parameters coord (tuple) – A tuple with length two representing the (x, y) coordinates.

set_start_rect(p1, p2)
Set the starting position of the agent.

82 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Des-file_format#Map_characters
https://nethackwiki.com/wiki/Des-file_format#Map_characters

MiniHack

Parameters coord (tuple) – A tuple with length two representing the (x, y) coordinates.

wallify()
Wallify the map. Turns walls completely surrounded by other walls into solid stone ‘ ‘.

class minihack.MiniHack(*args: Any, **kwargs: Any)
Bases: nle.env.tasks.

MiniHack base class.

All MiniHack environments are derived from this class, which itself is derived from NLE base class.

Note that this class itself is not used for creating new environment instances. Instead, MiniHackNavigation
and MiniHackSkill provide a more convenient interface for doing this, both of which are directly derived from
MiniHack for specific types of environments.

__init__(*args, des_file: str, reward_win=1, reward_lose=0, obs_crop_h=9, obs_crop_w=9,
obs_crop_pad=0, reward_manager=None, use_wiki=False, autopickup=True, pet=False,
observation_keys=['glyphs', 'chars', 'colors', 'specials', 'glyphs_crop', 'chars_crop', 'colors_crop',
'specials_crop', 'blstats', 'message'], seeds=None, include_see_actions=True,
include_alignment_blstats=True, **kwargs)

Constructs a new MiniHack environment.

Parameters

• des_file (str) – The description file for the environment.

• reward_win (float) – The reward received upon successfully completing an episode.
Defaults to 1.

• reward_lose (float) – The reward received upon death or aborting. Defaults to 1.

• obs_crop_h (int) – The height of agent-centred cropped observation. Defaults to 9.

• obs_crop_w (int) – The width of agent-centred cropped observation. Defaults to 9.

• obs_crop_pad (int) – The padding for agent-centred cropped observation. Defaults to
0.

• reward_manager (RewardManager or None) – The reward manager that describes the
custom reward function of the agent. If None, the goal of the agent is to reach the stair
down. Defaults to None.

• use_wiki (bool) – Whether to use the NetHack wiki. Defaults to False.

• autopickup (bool) – Turning autopickup on or off. Defaults to True.

• pet (bool) – Whether to include the pet. Defaults to False.

• observation_keys (list) – The keys of observations returned after every timestep by
the environment as a dictionary. Defaults to minihack.base.MH_DEFAULT_OBS_KEYS.

• seeds (list or None) – A list of integers used as level seeds for sampling episodes. The
reset()` function samples a seed from this list uniformly at random and uses it for setting
the level. When the sample_seed argument of the reset function is set to False, a random
level will not be sampled from this list during environment resetting. If None, the entire
level distribution is used. Defaults to None.

• penalty_mode (str) – The name of the mode for calculating the time step penalty. Can
be constant, exp, square, linear, or always. Defaults to constant. Inherited from
NetHackScore.

• penalty_step (float) – A constant applied to amount of frozen steps. Defaults to -0.01.
Inherited from NetHackScore.

9.15. minihack package 83

MiniHack

• penalty_time (float) – A constant applied to amount of frozen steps. Defaults to -0.0.
Inherited from NetHackScore.

• save_ttyrec_every (int) – Integer, if 0, no ttyrecs (game recordings) will be saved.
Otherwise, save a ttyrec every Nth episode. Defaults to 0. Inherited from NLE.

• savedir (str or None) – Path to save ttyrecs (game recordings) into, if
save_ttyrec_every is nonzero. If nonempty string, interpreted as a path to a new or
existing directory. If “” (empty string) or None, NLE choses a unique directory name.
Defaults to None. Inherited from NLE.

• character (str) – Name of character. Defaults to “mon-hum-neu-mal”. Interited from
NLE.

• max_episode_steps (int) – maximum amount of steps allowed before the game is force-
fully quit. In such cases, info["end_status"] ill be equal to StepStatus.ABORTED.
Defaults to 200. Inherited from NLE.

• actions (list) – list of actions. If None, the full action space will be used, i.e. nle.
nethack.ACTIONS. Defaults to MH_FULL_ACTIONS. Inherited from NLE.

• wizard (bool) – activate wizard mode. Defaults to False. Inherited from NLE.

• allow_all_yn_questions (bool) – If set to True, no y/n questions in step() are declined.
If set to False, only elements of SKIP_EXCEPTIONS are not declined. Defaults to True.
Inherited from NLE.

• allow_all_modes (bool) – If set to True, do not decline menus, text input or auto
‘MORE’. If set to False, only skip click through ‘MORE’ on death. Defaults to False.
Inherited from NLE.

• spawn_monsters (bool) – If False, disables normal NetHack behavior to randomly create
monsters. Defaults to False. Inherited from NLE.

• include_see_actions (bool) – If True, the agent’s action space includes the additional
NLE actions introduced in the 0.8.1 release. Has no effect when the actions parameter is
specified. Defaults to True.

• include_alignment_blstats (bool) – If True, the agent’s observation space includes
the alignment information in the blstats. This is introduced in NLE 0.9.0 release. Defaults
to True.

get_neighbor_descriptions(observation=None)
Returns the descriptions of nine neighboring grids around the agent.

get_neighbor_wiki_pages(observation=None)
Returns the page contents of the neighboring objects from NetHack wiki.

get_object_direction(name, observation=None)
Find the game direction of the (first) object in the neighboring nine tiles that contains the given name in its
description.

Parameters

• name (str) – Name of the object.

• observation (dict) – Agent observation.

Returns The index of the direction. None if not found.

Return type int

get_screen_description(x, y, observation=None)
Returns the description of the screen on (x,y) coordinates.

84 Chapter 9. Contributions and Maintenance

MiniHack

get_screen_wiki_page(x, y, observation=None)
Returns the wiki page matching the object on (x,y) coordinates.

key_in_inventory(name)
Returns key of the given object in the inventory.

Parameters name (str) – Name of the object.

Returns the key of the first item in the inventory that includes the argument name as a substring.
Returns None if not found.

Return type str

reset(*args, sample_seed=True, **kwargs)

screen_contains(name, observation=None)
Whether an object with the given name is visible on the screen, i.e. included in the screen descriptions of
the observation dictionary.

Parameters

• name (str) – Name of the object or monster.

• observation (dict) – Agent observation.

Returns True if the name is contained on the screen, False otherwise.

Return type bool

step(action: int)

update(des_file)
Update the current environment by replacing its description file.

class minihack.MiniHackNavigation(*args: Any, **kwargs: Any)
Bases: nle.env.tasks.

The base class for MiniHack Navigation tasks.

Navigation tasks have the following characteristics:

• Restricted action space: By default, the agent can only move towards eight compass directions.

• Yes/No questions, as well as menu-selection actions are disabled by default.

• The character is set to chaotic human male rogue.

• Auto-pick is enabled by default.

• Maximum episode limit defaults to 100 (can be overriden via the max_episode_steps argument)

• The default goal is to reach the stair down. This can be changed using a reward manager.

__init__(*args, des_file: Optional[str] = None, **kwargs)
Constructs a new MiniHack environment.

Parameters

• des_file (str) – The description file for the environment.

• reward_win (float) – The reward received upon successfully completing an episode.
Defaults to 1.

• reward_lose (float) – The reward received upon death or aborting. Defaults to 1.

• obs_crop_h (int) – The height of agent-centred cropped observation. Defaults to 9.

• obs_crop_w (int) – The width of agent-centred cropped observation. Defaults to 9.

9.15. minihack package 85

MiniHack

• obs_crop_pad (int) – The padding for agent-centred cropped observation. Defaults to
0.

• reward_manager (RewardManager or None) – The reward manager that describes the
custom reward function of the agent. If None, the goal of the agent is to reach the stair
down. Defaults to None.

• use_wiki (bool) – Whether to use the NetHack wiki. Defaults to False.

• autopickup (bool) – Turning autopickup on or off. Defaults to True.

• pet (bool) – Whether to include the pet. Defaults to False.

• observation_keys (list) – The keys of observations returned after every timestep by
the environment as a dictionary. Defaults to minihack.base.MH_DEFAULT_OBS_KEYS.

• seeds (list or None) – A list of integers used as level seeds for sampling episodes. The
reset()` function samples a seed from this list uniformly at random and uses it for setting
the level. When the sample_seed argument of the reset function is set to False, a random
level will not be sampled from this list during environment resetting. If None, the entire
level distribution is used. Defaults to None.

• penalty_mode (str) – The name of the mode for calculating the time step penalty. Can
be constant, exp, square, linear, or always. Defaults to constant. Inherited from
NetHackScore.

• penalty_step (float) – A constant applied to amount of frozen steps. Defaults to -0.01.
Inherited from NetHackScore.

• penalty_time (float) – A constant applied to amount of frozen steps. Defaults to -0.0.
Inherited from NetHackScore.

• save_ttyrec_every (int) – Integer, if 0, no ttyrecs (game recordings) will be saved.
Otherwise, save a ttyrec every Nth episode. Defaults to 0. Inherited from NLE.

• savedir (str or None) – Path to save ttyrecs (game recordings) into, if
save_ttyrec_every is nonzero. If nonempty string, interpreted as a path to a new or
existing directory. If “” (empty string) or None, NLE choses a unique directory name.
Defaults to None. Inherited from NLE.

• character (str) – Name of character. Defaults to “mon-hum-neu-mal”. Interited from
NLE.

• max_episode_steps (int) – maximum amount of steps allowed before the game is force-
fully quit. In such cases, info["end_status"] ill be equal to StepStatus.ABORTED.
Defaults to 200. Inherited from NLE.

• actions (list) – list of actions. If None, the full action space will be used, i.e. nle.
nethack.ACTIONS. Defaults to MH_FULL_ACTIONS. Inherited from NLE.

• wizard (bool) – activate wizard mode. Defaults to False. Inherited from NLE.

• allow_all_yn_questions (bool) – If set to True, no y/n questions in step() are declined.
If set to False, only elements of SKIP_EXCEPTIONS are not declined. Defaults to True.
Inherited from NLE.

• allow_all_modes (bool) – If set to True, do not decline menus, text input or auto
‘MORE’. If set to False, only skip click through ‘MORE’ on death. Defaults to False.
Inherited from NLE.

• spawn_monsters (bool) – If False, disables normal NetHack behavior to randomly create
monsters. Defaults to False. Inherited from NLE.

86 Chapter 9. Contributions and Maintenance

MiniHack

• include_see_actions (bool) – If True, the agent’s action space includes the additional
NLE actions introduced in the 0.8.1 release. Has no effect when the actions parameter is
specified. Defaults to True.

• include_alignment_blstats (bool) – If True, the agent’s observation space includes
the alignment information in the blstats. This is introduced in NLE 0.9.0 release. Defaults
to True.

class minihack.MiniHackSkill(*args: Any, **kwargs: Any)
Bases: nle.env.tasks.

The base class for MiniHack Skill Acquisition tasks.

Navigation tasks have the following characteristics:

• The full action space is used.

• Yes/No questions are enabled, but the menu-selection actions are disabled by default.

• The character is set to a neutral human male caveman.

• Maximum episode limit defaults to 250 (can be overriden via the max_episode_steps argument)

• The default goal is to reach the stair down. This can be changed using a reward manager.

• Auto-pick is disabled by default.

• Inventory strings and corresponding letter are also included as part of the agent observations.

__init__(*args, des_file, **kwargs)
Constructs a new MiniHack environment.

Parameters

• des_file (str) – The description file for the environment.

• reward_win (float) – The reward received upon successfully completing an episode.
Defaults to 1.

• reward_lose (float) – The reward received upon death or aborting. Defaults to 1.

• obs_crop_h (int) – The height of agent-centred cropped observation. Defaults to 9.

• obs_crop_w (int) – The width of agent-centred cropped observation. Defaults to 9.

• obs_crop_pad (int) – The padding for agent-centred cropped observation. Defaults to
0.

• reward_manager (RewardManager or None) – The reward manager that describes the
custom reward function of the agent. If None, the goal of the agent is to reach the stair
down. Defaults to None.

• use_wiki (bool) – Whether to use the NetHack wiki. Defaults to False.

• autopickup (bool) – Turning autopickup on or off. Defaults to True.

• pet (bool) – Whether to include the pet. Defaults to False.

• observation_keys (list) – The keys of observations returned after every timestep by
the environment as a dictionary. Defaults to minihack.base.MH_DEFAULT_OBS_KEYS.

• seeds (list or None) – A list of integers used as level seeds for sampling episodes. The
reset()` function samples a seed from this list uniformly at random and uses it for setting
the level. When the sample_seed argument of the reset function is set to False, a random
level will not be sampled from this list during environment resetting. If None, the entire
level distribution is used. Defaults to None.

9.15. minihack package 87

MiniHack

• penalty_mode (str) – The name of the mode for calculating the time step penalty. Can
be constant, exp, square, linear, or always. Defaults to constant. Inherited from
NetHackScore.

• penalty_step (float) – A constant applied to amount of frozen steps. Defaults to -0.01.
Inherited from NetHackScore.

• penalty_time (float) – A constant applied to amount of frozen steps. Defaults to -0.0.
Inherited from NetHackScore.

• save_ttyrec_every (int) – Integer, if 0, no ttyrecs (game recordings) will be saved.
Otherwise, save a ttyrec every Nth episode. Defaults to 0. Inherited from NLE.

• savedir (str or None) – Path to save ttyrecs (game recordings) into, if
save_ttyrec_every is nonzero. If nonempty string, interpreted as a path to a new or
existing directory. If “” (empty string) or None, NLE choses a unique directory name.
Defaults to None. Inherited from NLE.

• character (str) – Name of character. Defaults to “mon-hum-neu-mal”. Interited from
NLE.

• max_episode_steps (int) – maximum amount of steps allowed before the game is force-
fully quit. In such cases, info["end_status"] ill be equal to StepStatus.ABORTED.
Defaults to 200. Inherited from NLE.

• actions (list) – list of actions. If None, the full action space will be used, i.e. nle.
nethack.ACTIONS. Defaults to MH_FULL_ACTIONS. Inherited from NLE.

• wizard (bool) – activate wizard mode. Defaults to False. Inherited from NLE.

• allow_all_yn_questions (bool) – If set to True, no y/n questions in step() are declined.
If set to False, only elements of SKIP_EXCEPTIONS are not declined. Defaults to True.
Inherited from NLE.

• allow_all_modes (bool) – If set to True, do not decline menus, text input or auto
‘MORE’. If set to False, only skip click through ‘MORE’ on death. Defaults to False.
Inherited from NLE.

• spawn_monsters (bool) – If False, disables normal NetHack behavior to randomly create
monsters. Defaults to False. Inherited from NLE.

• include_see_actions (bool) – If True, the agent’s action space includes the additional
NLE actions introduced in the 0.8.1 release. Has no effect when the actions parameter is
specified. Defaults to True.

• include_alignment_blstats (bool) – If True, the agent’s observation space includes
the alignment information in the blstats. This is introduced in NLE 0.9.0 release. Defaults
to True.

class minihack.NetHackWiki(raw_wiki_file_name: str, processed_wiki_file_name: str, save_processed_json:
bool = True, ignore_inpage_anchors: bool = True, preprocess_input: bool =
True, exceptions: Optional[tuple] = None)

Bases: object

A class representing Nethack Wiki Data - pages and links between them.

Parameters

• raw_wiki_file_name (str) – The path to the raw file of NetHack wiki. The raw file can
be downloaded using the get_nhwiki_data.sh script located in minihack/scripts.

• processed_wiki_file_name (str) – The path to the processed file of NetHack wiki. The
processing is performed in the __init__ function of this classed.

88 Chapter 9. Contributions and Maintenance

MiniHack

• save_processed_json (bool) – Whether to save the processed json file of the wiki. Only
considered when a raw wiki file is passed. Defaults to True.

• ignore_inpage_anchors (bool) – Whether to ingnore in-page anchors. Defaults to True.

• preprocess_input (bool) – Whether to perform a preprocessing on wiki data. Defaults
to True.

• exceptions (Tuple[str] or None) – Name of entities in screen descriptions that are
ingored. If None, there are no exceptions. Defaults to None.

__init__(raw_wiki_file_name: str, processed_wiki_file_name: str, save_processed_json: bool = True,
ignore_inpage_anchors: bool = True, preprocess_input: bool = True, exceptions: Optional[tuple]
= None)→ None

Initialize self. See help(type(self)) for accurate signature.

get_page_data(page: str)→ dict
Get the data of a page.

Parameters page (str) – The page name.

Returns The page data as a dict.

Return type dict

get_page_text(page: str)→ str
Get the text of a page.

Parameters page (str) – The page name.

Returns The text of the page.

Return type str

class minihack.RewardManager
Bases: minihack.reward_manager.AbstractRewardManager

This class is used for managing rewards, events and termination for MiniHack tasks.

Some notes on the ordering or calls in the MiniHack/NetHack base class:

• step(action) is called on the environment

• Within step, first a copy of the last observation is made, and then the underlying NetHack game is stepped

• Then _is_episode_end(observation) is called to check whether this the episode has ended (and this
is overridden if we’ve gone over our max_steps, or the underlying NetHack game says we’re done (i.e. we
died)

• Then _reward_fn(last_observation, observation) is called to calculate the reward at this time-
step

• if end_status tells us the game is done, we quit the game

• then step returns the observation, calculated reward, done, and some

statistics.

All this means that we need to check whether an observation is terminal in _is_episode_end before we’re
calculating the reward function.

The call of _is_episode_end in MiniHack will call check_episode_end_call in this class, which checks
for termination and accumulates any reward, which is returned and zeroed in collect_reward.

__init__()
Initialize self. See help(type(self)) for accurate signature.

9.15. minihack package 89

MiniHack

add_amulet_event(reward=1, repeatable=False, terminal_required=True, terminal_sufficient=False)
Add event which is triggered when an amulet is worn.

Parameters

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_coordinate_event(coordinates: Tuple[int, int], reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered on when reaching the specified coordinates.

Parameters

• coordinates (Tuple[int, int]) – The coordinates to be reached (tuple of ints).

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_custom_reward_fn(reward_fn: Callable[[MiniHack, Any, int, Any], float])→ None
Add a custom reward function which is called every after step to calculate reward.

The function should be a callable which takes the environment, previous observation, action and current
observation and returns a float reward.

Parameters reward_fn (Callable[[MiniHack, Any, int, Any], float]) – A reward
function which takes an environment, previous observation, action, next observation and re-
turns a reward.

add_eat_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add an event which is triggered when name is eaten.

Parameters

• name (str) – The name of the object being eaten.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

90 Chapter 9. Contributions and Maintenance

MiniHack

add_event(event: minihack.reward_manager.Event)
Add an event to be managed by the reward manager.

Parameters event (Event) – The event to be added.

add_kill_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when a specified monster is killed.

Parameters

• name (str) – The name of the monster to be killed.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_location_event(location: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered on reaching a specified location.

Parameters

• name (str) – The name of the location to be reached.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_message_event(msgs: List[str], reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when any of the given messages are seen.

Parameters

• msgs (List[str]) – The name of the monster to be killed.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_positional_event(place_name: str, action_name: str, reward=1, repeatable=False,
terminal_required=True, terminal_sufficient=False)

Add event which is triggered on taking a given action at a given place.

9.15. minihack package 91

MiniHack

Parameters

• place_name (str) – The name of the place to trigger the event.

• action_name (int) – The name of the action to trigger the event.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_wear_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when a specific armor is worn.

Parameters

• name (str) – The name of the armor to be worn.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_wield_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when a specific weapon is wielded.

Parameters

• name (str) – The name of the weapon to be wielded.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

check_episode_end_call(env, previous_observation, action, observation)→ bool
Check if the task has ended, and accumulate any reward from the transition in self._reward.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

92 Chapter 9. Contributions and Maintenance

MiniHack

Returns Boolean whether the episode has ended.

Return type bool

collect_reward()→ float
Return reward calculated and accumulated in check_episode_end_call, and then reset it.

Returns The reward.

Return type flaot

reset()
Reset all events, to be called when a new episode occurs.

9.15.1 Submodules

minihack.base module

class minihack.base.MiniHack(*args: Any, **kwargs: Any)
Bases: nle.env.tasks.

MiniHack base class.

All MiniHack environments are derived from this class, which itself is derived from NLE base class.

Note that this class itself is not used for creating new environment instances. Instead, MiniHackNavigation
and MiniHackSkill provide a more convenient interface for doing this, both of which are directly derived from
MiniHack for specific types of environments.

__init__(*args, des_file: str, reward_win=1, reward_lose=0, obs_crop_h=9, obs_crop_w=9,
obs_crop_pad=0, reward_manager=None, use_wiki=False, autopickup=True, pet=False,
observation_keys=['glyphs', 'chars', 'colors', 'specials', 'glyphs_crop', 'chars_crop', 'colors_crop',
'specials_crop', 'blstats', 'message'], seeds=None, include_see_actions=True,
include_alignment_blstats=True, **kwargs)

Constructs a new MiniHack environment.

Parameters

• des_file (str) – The description file for the environment.

• reward_win (float) – The reward received upon successfully completing an episode.
Defaults to 1.

• reward_lose (float) – The reward received upon death or aborting. Defaults to 1.

• obs_crop_h (int) – The height of agent-centred cropped observation. Defaults to 9.

• obs_crop_w (int) – The width of agent-centred cropped observation. Defaults to 9.

• obs_crop_pad (int) – The padding for agent-centred cropped observation. Defaults to
0.

• reward_manager (RewardManager or None) – The reward manager that describes the
custom reward function of the agent. If None, the goal of the agent is to reach the stair
down. Defaults to None.

• use_wiki (bool) – Whether to use the NetHack wiki. Defaults to False.

• autopickup (bool) – Turning autopickup on or off. Defaults to True.

• pet (bool) – Whether to include the pet. Defaults to False.

9.15. minihack package 93

MiniHack

• observation_keys (list) – The keys of observations returned after every timestep by
the environment as a dictionary. Defaults to minihack.base.MH_DEFAULT_OBS_KEYS.

• seeds (list or None) – A list of integers used as level seeds for sampling episodes. The
reset()` function samples a seed from this list uniformly at random and uses it for setting
the level. When the sample_seed argument of the reset function is set to False, a random
level will not be sampled from this list during environment resetting. If None, the entire
level distribution is used. Defaults to None.

• penalty_mode (str) – The name of the mode for calculating the time step penalty. Can
be constant, exp, square, linear, or always. Defaults to constant. Inherited from
NetHackScore.

• penalty_step (float) – A constant applied to amount of frozen steps. Defaults to -0.01.
Inherited from NetHackScore.

• penalty_time (float) – A constant applied to amount of frozen steps. Defaults to -0.0.
Inherited from NetHackScore.

• save_ttyrec_every (int) – Integer, if 0, no ttyrecs (game recordings) will be saved.
Otherwise, save a ttyrec every Nth episode. Defaults to 0. Inherited from NLE.

• savedir (str or None) – Path to save ttyrecs (game recordings) into, if
save_ttyrec_every is nonzero. If nonempty string, interpreted as a path to a new or
existing directory. If “” (empty string) or None, NLE choses a unique directory name.
Defaults to None. Inherited from NLE.

• character (str) – Name of character. Defaults to “mon-hum-neu-mal”. Interited from
NLE.

• max_episode_steps (int) – maximum amount of steps allowed before the game is force-
fully quit. In such cases, info["end_status"] ill be equal to StepStatus.ABORTED.
Defaults to 200. Inherited from NLE.

• actions (list) – list of actions. If None, the full action space will be used, i.e. nle.
nethack.ACTIONS. Defaults to MH_FULL_ACTIONS. Inherited from NLE.

• wizard (bool) – activate wizard mode. Defaults to False. Inherited from NLE.

• allow_all_yn_questions (bool) – If set to True, no y/n questions in step() are declined.
If set to False, only elements of SKIP_EXCEPTIONS are not declined. Defaults to True.
Inherited from NLE.

• allow_all_modes (bool) – If set to True, do not decline menus, text input or auto
‘MORE’. If set to False, only skip click through ‘MORE’ on death. Defaults to False.
Inherited from NLE.

• spawn_monsters (bool) – If False, disables normal NetHack behavior to randomly create
monsters. Defaults to False. Inherited from NLE.

• include_see_actions (bool) – If True, the agent’s action space includes the additional
NLE actions introduced in the 0.8.1 release. Has no effect when the actions parameter is
specified. Defaults to True.

• include_alignment_blstats (bool) – If True, the agent’s observation space includes
the alignment information in the blstats. This is introduced in NLE 0.9.0 release. Defaults
to True.

get_neighbor_descriptions(observation=None)
Returns the descriptions of nine neighboring grids around the agent.

94 Chapter 9. Contributions and Maintenance

MiniHack

get_neighbor_wiki_pages(observation=None)
Returns the page contents of the neighboring objects from NetHack wiki.

get_object_direction(name, observation=None)
Find the game direction of the (first) object in the neighboring nine tiles that contains the given name in its
description.

Parameters

• name (str) – Name of the object.

• observation (dict) – Agent observation.

Returns The index of the direction. None if not found.

Return type int

get_screen_description(x, y, observation=None)
Returns the description of the screen on (x,y) coordinates.

get_screen_wiki_page(x, y, observation=None)
Returns the wiki page matching the object on (x,y) coordinates.

key_in_inventory(name)
Returns key of the given object in the inventory.

Parameters name (str) – Name of the object.

Returns the key of the first item in the inventory that includes the argument name as a substring.
Returns None if not found.

Return type str

reset(*args, sample_seed=True, **kwargs)

screen_contains(name, observation=None)
Whether an object with the given name is visible on the screen, i.e. included in the screen descriptions of
the observation dictionary.

Parameters

• name (str) – Name of the object or monster.

• observation (dict) – Agent observation.

Returns True if the name is contained on the screen, False otherwise.

Return type bool

step(action: int)

update(des_file)
Update the current environment by replacing its description file.

9.15. minihack package 95

MiniHack

minihack.level_generator module

class minihack.level_generator.LevelGenerator(map=None, w=8, h=8, fill='.', lit=True,
flags=('hardfloor'), solidfill=' ')

Bases: object

LevelGenerator provides a convenient Python interface for quickly writing description files for MiniHack. The
LevelGenerator class can be used to create MAZE-type levels with specified heights and widths, and can then
fill those levels with objects, monsters and terrain, and specify the start point of the level.

Parameters

• map (str or None) – The description of the map block of the environment. If None, the
map will have a rectangle layout with the given height and width. Defaults to None.

• w (int) – The width of map. Only used when map=None. Defaults to 8.

• h (int) – The height of map. Only used when map=None. Defaults to 8.

• fill (str) – A character describing the environment feature that fills the map. Only used
when map=None. Defaults to “.”, which corresponds to floor.

• lit (bool) – Whether the layout is lit or not. This affects the observations the agent will
receive. If an area is not lit, the agent can only see directly adjacent grids. Defaults to True.

• flags (tuple) – Flags of the environment. For the full list, see https://nethackwiki.com/
wiki/Des-file_format#FLAGS. Defaults to (“hardfloor”,).

• solidfill (str) – A character describing the environment feature used for filling solid /
unspecified parts of the map. Defaults to ” “, which corresponds to solid wall.

__init__(map=None, w=8, h=8, fill='.', lit=True, flags=('hardfloor'), solidfill=' ')
Initialize self. See help(type(self)) for accurate signature.

add_altar(place=None, align='random', type='random')
Add an altar.

Parameters

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

• align (str) – The alignment. Possible values are “noalign”, “law”, “neutral”, “chaos”,
“coaligned”, “noncoaligned”, and “random”. Defaults to “random”.

• type (str) – The type of the altar. Possible values are “sanctum”, “shrine”, “altar”, and
“random”. Defaults to random.

add_boulder(place=None)
Add a boulder to the floor.

Parameters

• amount (int) – The amount of gold.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_door(state, place=None)
Add a door.

Parameters

96 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Des-file_format#FLAGS
https://nethackwiki.com/wiki/Des-file_format#FLAGS

MiniHack

• state (str) – The state of the door. Possible values are “locked”, “closed”, “open”,
“nodoor”, and “random”. Defaults to “random”.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_fountain(place=None)
Add a fountain.

Parameters place (None, tuple or str) – The place of the added object. If None, the loca-
tion is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_goal_pos(place=None)
Add a goal at the given place. Same as add_stair_down.

add_gold(amount, place=None)
Add gold on the floor.

Parameters

• amount (int) – The amount of gold.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_line(str)
Add a custom string to the buttom of the description file.

Parameters str (str) – The string to be concatenated to the des-file.

add_mazewalk(coord=None, dir='east')
Creates a random maze, starting from the given coordinate.

Mazewalk turns map grids with solid stone into floor. From the starting position, it checks the mapgrid in
the direction given, and if it’s solid stone, it will move there, and turn that place into floor. Then it will
choose a random direction, jump over the nearest mapgrid in that direction, and check the next mapgrid
for solid stone. If there is solid stone, mazewalk will move that direction, changing that place and the
intervening mapgrid to floor. Normally the generated maze will not have any loops.

Pointing mazewalk at that will create a small maze of trees, but unless the map (at the place where it’s
put into the level) is surrounded by something else than solid stone, mazewalk will get out of that MAP.
Substituting floor characters for some of the trees “in the maze” will make loops in the maze, which are not
otherwise possible. Substituting floor characters for some of the trees at the edges of the map will make
maze entrances and exits at those places.

For more details see https://nethackwiki.com/wiki/Des-file_format#MAZEWALK.

Parameters coord – A tuple with length two representing the (x, y) coordinates. If None is
passed, the middle point of the map is selected. Defaults to None.

add_monster(name='random', symbol=None, place=None, args=())
Add a monster to the map.

Parameters

• name (str) – The name of the monster. Defaults to random.

• symbol (str or None) – The symbol of the monster. The symbol should correspond
to the family of the specified mosnter. For example, “d” symbol corresponds to canine

9.15. minihack package 97

https://nethackwiki.com/wiki/Des-file_format#MAZEWALK

MiniHack

monsters, so the name of the object should also correspond to canines (e.g. jackal). Not
used when name is “random”. Defaults to None.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

• args (tuple) – Additional monster arguments, e.g. “hostile” or “peaceful”, “asleep”
or “awake”, etc. For more details, see https://nethackwiki.com/wiki/Des-file_format#
MONSTER.

add_object(name='random', symbol='%', place=None, cursestate=None)
Add an object to the map.

Parameters

• name (str) – The name of the object. Defaults to random.

• symbol (str) – The symbol of the object. The symbol should correspond to the given ob-
ject name. For example, “%” symbol corresponds to comestibles, so the name of the object
should also correspond to commestibles (e.g. apple). Not used when name is “random”.
Defaults to “%”.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

• cursetstate (str or None) – The cursed state of the object. Can be “blessed”, “un-
cursed”, “cursed” or “random”. Defaults to None (not used).

add_object_area(area_name, name='random', symbol='%', cursestate=None)
Add an object in an area of the map defined by area_name variable. See add_object for more details.

add_sink(place=None)
Add a sink.

Parameters place (None, tuple or str) – The place of the added object. If None, the loca-
tion is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_stair_down(place=None)
Add a stair down at the given place.

Parameters place (None, tuple or str) – The place of the added object. If None, the loca-
tion is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

add_terrain(coord, flag, in_footer=False)
Add terrain features to the map.

Parameters

• coord (tuple) – A tuple with length two representing the (x, y) coordinates.

• flag (str) – The flag corresponding to the desired terrain feature. Should belong to mini-
hack.level_generator.MAP_CHARS. For more details, see https://nethackwiki.com/wiki/
Des-file_format#Map_characters

• in_footer (bool) – Whether to define the terrain feature as an additional line in the de-
scription file (True) or directly modify the map block with the given flag (False). Defaults
to False.

98 Chapter 9. Contributions and Maintenance

https://nethackwiki.com/wiki/Des-file_format#MONSTER
https://nethackwiki.com/wiki/Des-file_format#MONSTER
https://nethackwiki.com/wiki/Des-file_format#Map_characters
https://nethackwiki.com/wiki/Des-file_format#Map_characters

MiniHack

add_trap(name='teleport', place=None)
Add a trap.

Parameters

• name (str) – The name of the trap. For possible values, see mini-
hack.level_generator.TRAP_NAMES. Defaults to “teleport”.

• place (None, tuple or str) – The place of the added object. If None, the location
is selected randomly. Tuple values are used for providing exact (x, y) coordinates. String
values are copied to des-file as is. Defaults to None.

fill_terrain(type, flag, x1, y1, x2, y2)
Fill the areas between (x1, y1) and (x2, y2) with the given dungeon feature:

Parameters

• type (str) – The type of filling. “rect” indicates an unfilled rectangle, containing just
the edges and none of the interior points. “fillrect” denotes filled rectangle containing the
edges and all of the interior points. “line” is used for a straight line drawn from one pair of
coordinates to the other using Bresenham’s line algorithm.

• flag (str) – The flag corresponding to the desired terrain feature. Should belong to mini-
hack.level_generator.MAP_CHARS. For more details, see https://nethackwiki.com/wiki/
Des-file_format#Map_characters

• x1 (int) – x coordinate of point 1.

• y1 (int) – y coordinate of point 1.

• x2 (int) – x coordinate of point 2.

• y2 (int) – y coordinate of point 2.

get_des()
Returns the description file.

Returns the description file as a string.

Return type str

get_map_array()
Returns the map as a two-dimensional numpy array.

get_map_str()
Returns the map as a string.

init_map(map=None, x=8, y=8, fill='.')
Initialise the map block of the des-file.

set_area_variable(var_name, type, x1, y1, x2, y2)
Set a variable representing an area on the map.

Parameters

• var_name (str) – The name of the variable.

• type (str) – The type of filling. “rect” indicates an unfilled rectangle, containing just
the edges and none of the interior points. “fillrect” denotes filled rectangle containing the
edges and all of the interior points. “line” is used for a straight line drawn from one pair of
coordinates to the other using Bresenham’s line algorithm.

• x1 (int) – x coordinate of point 1.

• y1 (int) – y coordinate of point 1.

9.15. minihack package 99

https://nethackwiki.com/wiki/Des-file_format#Map_characters
https://nethackwiki.com/wiki/Des-file_format#Map_characters

MiniHack

• x2 (int) – x coordinate of point 2.

• y2 (int) – y coordinate of point 2.

set_start_pos(coord)
Set the starting position of the agent.

Parameters coord (tuple) – A tuple with length two representing the (x, y) coordinates.

set_start_rect(p1, p2)
Set the starting position of the agent.

Parameters coord (tuple) – A tuple with length two representing the (x, y) coordinates.

wallify()
Wallify the map. Turns walls completely surrounded by other walls into solid stone ‘ ‘.

minihack.navigation module

class minihack.navigation.MiniHackNavigation(*args: Any, **kwargs: Any)
Bases: nle.env.tasks.

The base class for MiniHack Navigation tasks.

Navigation tasks have the following characteristics:

• Restricted action space: By default, the agent can only move towards eight compass directions.

• Yes/No questions, as well as menu-selection actions are disabled by default.

• The character is set to chaotic human male rogue.

• Auto-pick is enabled by default.

• Maximum episode limit defaults to 100 (can be overriden via the max_episode_steps argument)

• The default goal is to reach the stair down. This can be changed using a reward manager.

__init__(*args, des_file: Optional[str] = None, **kwargs)
Constructs a new MiniHack environment.

Parameters

• des_file (str) – The description file for the environment.

• reward_win (float) – The reward received upon successfully completing an episode.
Defaults to 1.

• reward_lose (float) – The reward received upon death or aborting. Defaults to 1.

• obs_crop_h (int) – The height of agent-centred cropped observation. Defaults to 9.

• obs_crop_w (int) – The width of agent-centred cropped observation. Defaults to 9.

• obs_crop_pad (int) – The padding for agent-centred cropped observation. Defaults to
0.

• reward_manager (RewardManager or None) – The reward manager that describes the
custom reward function of the agent. If None, the goal of the agent is to reach the stair
down. Defaults to None.

• use_wiki (bool) – Whether to use the NetHack wiki. Defaults to False.

• autopickup (bool) – Turning autopickup on or off. Defaults to True.

• pet (bool) – Whether to include the pet. Defaults to False.

100 Chapter 9. Contributions and Maintenance

MiniHack

• observation_keys (list) – The keys of observations returned after every timestep by
the environment as a dictionary. Defaults to minihack.base.MH_DEFAULT_OBS_KEYS.

• seeds (list or None) – A list of integers used as level seeds for sampling episodes. The
reset()` function samples a seed from this list uniformly at random and uses it for setting
the level. When the sample_seed argument of the reset function is set to False, a random
level will not be sampled from this list during environment resetting. If None, the entire
level distribution is used. Defaults to None.

• penalty_mode (str) – The name of the mode for calculating the time step penalty. Can
be constant, exp, square, linear, or always. Defaults to constant. Inherited from
NetHackScore.

• penalty_step (float) – A constant applied to amount of frozen steps. Defaults to -0.01.
Inherited from NetHackScore.

• penalty_time (float) – A constant applied to amount of frozen steps. Defaults to -0.0.
Inherited from NetHackScore.

• save_ttyrec_every (int) – Integer, if 0, no ttyrecs (game recordings) will be saved.
Otherwise, save a ttyrec every Nth episode. Defaults to 0. Inherited from NLE.

• savedir (str or None) – Path to save ttyrecs (game recordings) into, if
save_ttyrec_every is nonzero. If nonempty string, interpreted as a path to a new or
existing directory. If “” (empty string) or None, NLE choses a unique directory name.
Defaults to None. Inherited from NLE.

• character (str) – Name of character. Defaults to “mon-hum-neu-mal”. Interited from
NLE.

• max_episode_steps (int) – maximum amount of steps allowed before the game is force-
fully quit. In such cases, info["end_status"] ill be equal to StepStatus.ABORTED.
Defaults to 200. Inherited from NLE.

• actions (list) – list of actions. If None, the full action space will be used, i.e. nle.
nethack.ACTIONS. Defaults to MH_FULL_ACTIONS. Inherited from NLE.

• wizard (bool) – activate wizard mode. Defaults to False. Inherited from NLE.

• allow_all_yn_questions (bool) – If set to True, no y/n questions in step() are declined.
If set to False, only elements of SKIP_EXCEPTIONS are not declined. Defaults to True.
Inherited from NLE.

• allow_all_modes (bool) – If set to True, do not decline menus, text input or auto
‘MORE’. If set to False, only skip click through ‘MORE’ on death. Defaults to False.
Inherited from NLE.

• spawn_monsters (bool) – If False, disables normal NetHack behavior to randomly create
monsters. Defaults to False. Inherited from NLE.

• include_see_actions (bool) – If True, the agent’s action space includes the additional
NLE actions introduced in the 0.8.1 release. Has no effect when the actions parameter is
specified. Defaults to True.

• include_alignment_blstats (bool) – If True, the agent’s observation space includes
the alignment information in the blstats. This is introduced in NLE 0.9.0 release. Defaults
to True.

9.15. minihack package 101

MiniHack

minihack.reward_manager module

class minihack.reward_manager.AbstractRewardManager
Bases: abc.ABC

This is the abstract base class for the RewardManager that is used for defining custom reward functions.

__init__()
Initialize self. See help(type(self)) for accurate signature.

abstract check_episode_end_call(env, previous_observation, action, observation)→ bool
Check if the task has ended, and accumulate any reward from the transition in self._reward.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns Boolean whether the episode has ended.

Return type bool

abstract collect_reward()→ float
Return reward calculated and accumulated in check_episode_end_call, and then reset it.

Returns The reward.

Return type flaot

abstract reset()→ None
Reset all events, to be called when a new episode occurs.

class minihack.reward_manager.CoordEvent(*args, coordinates: Tuple[int, int])
Bases: minihack.reward_manager.Event

An event which occurs when reaching certain coordinates.

__init__(*args, coordinates: Tuple[int, int])
Initialise the Event.

Parameters

• coordinates (tuple) – The coordinates to reach for the event.

• reward (float) – The reward for the event occuring

• repeatable (bool) – Whether the event can occur repeated (i.e. if the reward can be
collected repeatedly

• terminal_required (bool) – Whether this event is required for the episode to terminate.

• terminal_sufficient (bool) – Whether this event causes the episode to terminate on
its own.

check(env, previous_observation, action, observation)→ float
Check whether the environment is in the state such that this event has occured.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

102 Chapter 9. Contributions and Maintenance

MiniHack

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns The reward.

Return type float

class minihack.reward_manager.Event(reward: float, repeatable: bool, terminal_required: bool,
terminal_sufficient: bool)

Bases: abc.ABC

An event which can occur in a MiniHack episode.

This is the base class of all other events.

__init__(reward: float, repeatable: bool, terminal_required: bool, terminal_sufficient: bool)
Initialise the Event.

Parameters

• reward (float) – The reward for the event occuring

• repeatable (bool) – Whether the event can occur repeated (i.e. if the reward can be
collected repeatedly

• terminal_required (bool) – Whether this event is required for the episode to terminate.

• terminal_sufficient (bool) – Whether this event causes the episode to terminate on
its own.

abstract check(env, previous_observation, action, observation)→ float
Check whether the environment is in the state such that this event has occured.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns The reward.

Return type float

reset()
Reset the event, if there is any state necessary.

class minihack.reward_manager.EventType(value)
Bases: enum.IntEnum

An enumeration.

COORD = 2

LOC = 3

LOC_ACTION = 1

MESSAGE = 0

class minihack.reward_manager.GroupedRewardManager
Bases: minihack.reward_manager.AbstractRewardManager

Operates as a collection of reward managers.

9.15. minihack package 103

MiniHack

The rewards from each reward manager are summed, and termination can be specified by
terminal_sufficient and terminal_required on each reward manager.

Given this can be nested arbitrarily deeply (as each reward manager could itself be a GroupedRewardManager),
this enables complex specification of groups of rewards.

__init__()
Initialize self. See help(type(self)) for accurate signature.

add_reward_manager(reward_manager: minihack.reward_manager.AbstractRewardManager,
terminal_required: bool, terminal_sufficient: bool)→ None

Add a new reward manager, with terminal_sufficient and terminal_required acting as for indi-
vidual events.

Parameters

• reward_manager (RewardManager) – The reward manager to be added.

• terminal_required (bool) – Whether this reward manager terminating is required for
the episode to terminate.

• terminal_sufficient – Whether this reward manager terminating is sufficient for the
episode to terminate.

check_episode_end_call(env, previous_observation, action, observation)→ bool
Check if the task has ended, and accumulate any reward from the transition in self._reward.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns Boolean whether the episode has ended.

Return type bool

collect_reward()
Return reward calculated and accumulated in check_episode_end_call, and then reset it.

Returns The reward.

Return type flaot

reset()
Reset all events, to be called when a new episode occurs.

class minihack.reward_manager.LocActionEvent(*args, loc: str, action: nle.nethack.Command)
Bases: minihack.reward_manager.Event

An event which checks whether an action is performed at a specified location.

__init__(*args, loc: str, action: nle.nethack.Command)
Initialise the Event.

Parameters

• loc (str) – The name of the location to reach.

• action (int) – The action to perform.

• reward (float) – The reward for the event occuring

104 Chapter 9. Contributions and Maintenance

MiniHack

• repeatable (bool) – Whether the event can occur repeated (i.e. if the reward can be
collected repeatedly

• terminal_required (bool) – Whether this event is required for the episode to terminate.

• terminal_sufficient (bool) – Whether this event causes the episode to terminate on
its own.

check(env, previous_observation, action, observation)→ float
Check whether the environment is in the state such that this event has occured.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns The reward.

Return type float

reset()
Reset the event, if there is any state necessary.

class minihack.reward_manager.LocEvent(*args, loc: str)
Bases: minihack.reward_manager.Event

An event which checks whether a specified location is reached.

__init__(*args, loc: str)
Initialise the Event.

Parameters

• reward (float) – The reward for the event occuring

• repeatable (bool) – Whether the event can occur repeated (i.e. if the reward can be
collected repeatedly

• terminal_required (bool) – Whether this event is required for the episode to terminate.

• terminal_sufficient (bool) – Whether this event causes the episode to terminate on
its own.

check(env, previous_observation, action, observation)→ float
Check whether the environment is in the state such that this event has occured.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns The reward.

Return type float

class minihack.reward_manager.MessageEvent(*args, messages: List[str])
Bases: minihack.reward_manager.Event

9.15. minihack package 105

MiniHack

An event which occurs when any of the messages appear.

__init__(*args, messages: List[str])
Initialise the Event.

Parameters

• messages (list) – The messages to be seen to trigger the event.

• reward (float) – The reward for the event occuring

• repeatable (bool) – Whether the event can occur repeated (i.e. if the reward can be
collected repeatedly

• terminal_required (bool) – Whether this event is required for the episode to terminate.

• terminal_sufficient (bool) – Whether this event causes the episode to terminate on
its own.

check(env, previous_observation, action, observation)→ float
Check whether the environment is in the state such that this event has occured.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns The reward.

Return type float

class minihack.reward_manager.RewardManager
Bases: minihack.reward_manager.AbstractRewardManager

This class is used for managing rewards, events and termination for MiniHack tasks.

Some notes on the ordering or calls in the MiniHack/NetHack base class:

• step(action) is called on the environment

• Within step, first a copy of the last observation is made, and then the underlying NetHack game is stepped

• Then _is_episode_end(observation) is called to check whether this the episode has ended (and this
is overridden if we’ve gone over our max_steps, or the underlying NetHack game says we’re done (i.e. we
died)

• Then _reward_fn(last_observation, observation) is called to calculate the reward at this time-
step

• if end_status tells us the game is done, we quit the game

• then step returns the observation, calculated reward, done, and some

statistics.

All this means that we need to check whether an observation is terminal in _is_episode_end before we’re
calculating the reward function.

The call of _is_episode_end in MiniHack will call check_episode_end_call in this class, which checks
for termination and accumulates any reward, which is returned and zeroed in collect_reward.

__init__()
Initialize self. See help(type(self)) for accurate signature.

106 Chapter 9. Contributions and Maintenance

MiniHack

add_amulet_event(reward=1, repeatable=False, terminal_required=True, terminal_sufficient=False)
Add event which is triggered when an amulet is worn.

Parameters

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_coordinate_event(coordinates: Tuple[int, int], reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered on when reaching the specified coordinates.

Parameters

• coordinates (Tuple[int, int]) – The coordinates to be reached (tuple of ints).

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_custom_reward_fn(reward_fn: Callable[[MiniHack, Any, int, Any], float])→ None
Add a custom reward function which is called every after step to calculate reward.

The function should be a callable which takes the environment, previous observation, action and current
observation and returns a float reward.

Parameters reward_fn (Callable[[MiniHack, Any, int, Any], float]) – A reward
function which takes an environment, previous observation, action, next observation and re-
turns a reward.

add_eat_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add an event which is triggered when name is eaten.

Parameters

• name (str) – The name of the object being eaten.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

9.15. minihack package 107

MiniHack

add_event(event: minihack.reward_manager.Event)
Add an event to be managed by the reward manager.

Parameters event (Event) – The event to be added.

add_kill_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when a specified monster is killed.

Parameters

• name (str) – The name of the monster to be killed.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_location_event(location: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered on reaching a specified location.

Parameters

• name (str) – The name of the location to be reached.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_message_event(msgs: List[str], reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when any of the given messages are seen.

Parameters

• msgs (List[str]) – The name of the monster to be killed.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_positional_event(place_name: str, action_name: str, reward=1, repeatable=False,
terminal_required=True, terminal_sufficient=False)

Add event which is triggered on taking a given action at a given place.

108 Chapter 9. Contributions and Maintenance

MiniHack

Parameters

• place_name (str) – The name of the place to trigger the event.

• action_name (int) – The name of the action to trigger the event.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_wear_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when a specific armor is worn.

Parameters

• name (str) – The name of the armor to be worn.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

add_wield_event(name: str, reward=1, repeatable=False, terminal_required=True,
terminal_sufficient=False)

Add event which is triggered when a specific weapon is wielded.

Parameters

• name (str) – The name of the weapon to be wielded.

• reward (float) – The reward for this event. Defaults to 1.

• repeatable (bool) – Whether this event can be triggered multiple times. Defaults to
False.

• terminal_required (bool) – Whether this event is required for termination. Defaults to
True.

• terminal_sufficient (bool) – Whether this event is sufficient for termination. Defaults
to False.

check_episode_end_call(env, previous_observation, action, observation)→ bool
Check if the task has ended, and accumulate any reward from the transition in self._reward.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

9.15. minihack package 109

MiniHack

Returns Boolean whether the episode has ended.

Return type bool

collect_reward()→ float
Return reward calculated and accumulated in check_episode_end_call, and then reset it.

Returns The reward.

Return type flaot

reset()
Reset all events, to be called when a new episode occurs.

class minihack.reward_manager.SequentialRewardManager
Bases: minihack.reward_manager.RewardManager

A reward manager that ignores terminal_required and terminal_sufficient, and just require every event
is completed in the order it is added to the reward manager.

__init__()
Initialize self. See help(type(self)) for accurate signature.

check_episode_end_call(env, previous_observation, action, observation)
Check if the task has ended, and accumulate any reward from the transition in self._reward.

Parameters

• env (MiniHack) – The MiniHack environment in question.

• previous_observation (tuple) – The previous state observation.

• action (int) – The action taken.

• observation (tuple) – The current observation.

Returns Boolean whether the episode has ended.

Return type bool

minihack.skills module

class minihack.skills.MiniHackSkill(*args: Any, **kwargs: Any)
Bases: nle.env.tasks.

The base class for MiniHack Skill Acquisition tasks.

Navigation tasks have the following characteristics:

• The full action space is used.

• Yes/No questions are enabled, but the menu-selection actions are disabled by default.

• The character is set to a neutral human male caveman.

• Maximum episode limit defaults to 250 (can be overriden via the max_episode_steps argument)

• The default goal is to reach the stair down. This can be changed using a reward manager.

• Auto-pick is disabled by default.

• Inventory strings and corresponding letter are also included as part of the agent observations.

__init__(*args, des_file, **kwargs)
Constructs a new MiniHack environment.

Parameters

110 Chapter 9. Contributions and Maintenance

MiniHack

• des_file (str) – The description file for the environment.

• reward_win (float) – The reward received upon successfully completing an episode.
Defaults to 1.

• reward_lose (float) – The reward received upon death or aborting. Defaults to 1.

• obs_crop_h (int) – The height of agent-centred cropped observation. Defaults to 9.

• obs_crop_w (int) – The width of agent-centred cropped observation. Defaults to 9.

• obs_crop_pad (int) – The padding for agent-centred cropped observation. Defaults to
0.

• reward_manager (RewardManager or None) – The reward manager that describes the
custom reward function of the agent. If None, the goal of the agent is to reach the stair
down. Defaults to None.

• use_wiki (bool) – Whether to use the NetHack wiki. Defaults to False.

• autopickup (bool) – Turning autopickup on or off. Defaults to True.

• pet (bool) – Whether to include the pet. Defaults to False.

• observation_keys (list) – The keys of observations returned after every timestep by
the environment as a dictionary. Defaults to minihack.base.MH_DEFAULT_OBS_KEYS.

• seeds (list or None) – A list of integers used as level seeds for sampling episodes. The
reset()` function samples a seed from this list uniformly at random and uses it for setting
the level. When the sample_seed argument of the reset function is set to False, a random
level will not be sampled from this list during environment resetting. If None, the entire
level distribution is used. Defaults to None.

• penalty_mode (str) – The name of the mode for calculating the time step penalty. Can
be constant, exp, square, linear, or always. Defaults to constant. Inherited from
NetHackScore.

• penalty_step (float) – A constant applied to amount of frozen steps. Defaults to -0.01.
Inherited from NetHackScore.

• penalty_time (float) – A constant applied to amount of frozen steps. Defaults to -0.0.
Inherited from NetHackScore.

• save_ttyrec_every (int) – Integer, if 0, no ttyrecs (game recordings) will be saved.
Otherwise, save a ttyrec every Nth episode. Defaults to 0. Inherited from NLE.

• savedir (str or None) – Path to save ttyrecs (game recordings) into, if
save_ttyrec_every is nonzero. If nonempty string, interpreted as a path to a new or
existing directory. If “” (empty string) or None, NLE choses a unique directory name.
Defaults to None. Inherited from NLE.

• character (str) – Name of character. Defaults to “mon-hum-neu-mal”. Interited from
NLE.

• max_episode_steps (int) – maximum amount of steps allowed before the game is force-
fully quit. In such cases, info["end_status"] ill be equal to StepStatus.ABORTED.
Defaults to 200. Inherited from NLE.

• actions (list) – list of actions. If None, the full action space will be used, i.e. nle.
nethack.ACTIONS. Defaults to MH_FULL_ACTIONS. Inherited from NLE.

• wizard (bool) – activate wizard mode. Defaults to False. Inherited from NLE.

9.15. minihack package 111

MiniHack

• allow_all_yn_questions (bool) – If set to True, no y/n questions in step() are declined.
If set to False, only elements of SKIP_EXCEPTIONS are not declined. Defaults to True.
Inherited from NLE.

• allow_all_modes (bool) – If set to True, do not decline menus, text input or auto
‘MORE’. If set to False, only skip click through ‘MORE’ on death. Defaults to False.
Inherited from NLE.

• spawn_monsters (bool) – If False, disables normal NetHack behavior to randomly create
monsters. Defaults to False. Inherited from NLE.

• include_see_actions (bool) – If True, the agent’s action space includes the additional
NLE actions introduced in the 0.8.1 release. Has no effect when the actions parameter is
specified. Defaults to True.

• include_alignment_blstats (bool) – If True, the agent’s observation space includes
the alignment information in the blstats. This is introduced in NLE 0.9.0 release. Defaults
to True.

minihack.wiki module

class minihack.wiki.NetHackWiki(raw_wiki_file_name: str, processed_wiki_file_name: str,
save_processed_json: bool = True, ignore_inpage_anchors: bool = True,
preprocess_input: bool = True, exceptions: Optional[tuple] = None)

Bases: object

A class representing Nethack Wiki Data - pages and links between them.

Parameters

• raw_wiki_file_name (str) – The path to the raw file of NetHack wiki. The raw file can
be downloaded using the get_nhwiki_data.sh script located in minihack/scripts.

• processed_wiki_file_name (str) – The path to the processed file of NetHack wiki. The
processing is performed in the __init__ function of this classed.

• save_processed_json (bool) – Whether to save the processed json file of the wiki. Only
considered when a raw wiki file is passed. Defaults to True.

• ignore_inpage_anchors (bool) – Whether to ingnore in-page anchors. Defaults to True.

• preprocess_input (bool) – Whether to perform a preprocessing on wiki data. Defaults
to True.

• exceptions (Tuple[str] or None) – Name of entities in screen descriptions that are
ingored. If None, there are no exceptions. Defaults to None.

__init__(raw_wiki_file_name: str, processed_wiki_file_name: str, save_processed_json: bool = True,
ignore_inpage_anchors: bool = True, preprocess_input: bool = True, exceptions: Optional[tuple]
= None)→ None

Initialize self. See help(type(self)) for accurate signature.

get_page_data(page: str)→ dict
Get the data of a page.

Parameters page (str) – The page name.

Returns The page data as a dict.

Return type dict

112 Chapter 9. Contributions and Maintenance

MiniHack

get_page_text(page: str)→ str
Get the text of a page.

Parameters page (str) – The page name.

Returns The text of the page.

Return type str

class minihack.wiki.TextProcessor
Bases: object

Base class for modeling relations between an object and subject.

__init__()
Initialize self. See help(type(self)) for accurate signature.

preprocess(input_str: str)→ str

process(input_str: str)→ str

minihack.wiki.clean_page_text(text: List[str])→ str
Clean Markdown text to make it more passable into an NLP model.

This is currently very basic, and more advanced parsing could be employed if necessary.

minihack.wiki.load_json(file_name: str)→ list
Load a file containing a json object per line into a list of dicts.

minihack.wiki.process_json(wiki_json: List[dict], ignore_inpage_anchors)→ dict
Process a list of json pages of the wiki into one dict of all pages.

9.16 References

• MiniHack is open-source and available on GitHub.

• Read our recent Facebook AI Research blogpost.

• Check out the MiniHack NeurIPS 2021 paper.

9.17 NetHack

NetHack is one of the oldest and arguably most impactful videogames in history, as well as being one of the hardest
roguelikes currently being played by humans. It is procedurally generated, rich in entities and dynamics, and overall an
extremely challenging environment for current state-of-the-art RL agents, while being much cheaper to run compared
to other challenging testbeds.

For more information about NetHack, check out its wikipedia article, nethack.org, and NetHack wiki.

9.16. References 113

https://github.com/facebookresearch/minihack
https://ai.facebook.com/blog/minihack-a-new-sandbox-for-open-ended-reinforcement-learning
https://arxiv.org/abs/2109.13202
https://en.wikipedia.org/wiki/NetHack
https://nethack.org/
https://nethackwiki.com

MiniHack

9.17.1 NetHack Learning Environment

The NetHack Learning Environment (NLE) is a Reinforcement Learning environment based on NetHack 3.6.6 and
designed to provide a standard RL interface to the game, and comes You can read more about NLE in the NeurIPS
2020 paper.

114 Chapter 9. Contributions and Maintenance

https://github.com/facebookresearch/nle
https://arxiv.org/abs/2006.13760
https://arxiv.org/abs/2006.13760

PYTHON MODULE INDEX

m
minihack, 78
minihack.base, 93
minihack.level_generator, 96
minihack.navigation, 100
minihack.reward_manager, 102
minihack.skills, 110
minihack.wiki, 112

115

MiniHack

116 Python Module Index

INDEX

Symbols
__init__() (minihack.LevelGenerator method), 79
__init__() (minihack.MiniHack method), 83
__init__() (minihack.MiniHackNavigation method), 85
__init__() (minihack.MiniHackSkill method), 87
__init__() (minihack.NetHackWiki method), 89
__init__() (minihack.RewardManager method), 89
__init__() (minihack.base.MiniHack method), 93
__init__() (minihack.level_generator.LevelGenerator

method), 96
__init__() (minihack.navigation.MiniHackNavigation

method), 100
__init__() (minihack.reward_manager.AbstractRewardManager

method), 102
__init__() (minihack.reward_manager.CoordEvent

method), 102
__init__() (minihack.reward_manager.Event method),

103
__init__() (minihack.reward_manager.GroupedRewardManager

method), 104
__init__() (minihack.reward_manager.LocActionEvent

method), 104
__init__() (minihack.reward_manager.LocEvent

method), 105
__init__() (minihack.reward_manager.MessageEvent

method), 106
__init__() (minihack.reward_manager.RewardManager

method), 106
__init__() (minihack.reward_manager.SequentialRewardManager

method), 110
__init__() (minihack.skills.MiniHackSkill method),

110
__init__() (minihack.wiki.NetHackWiki method), 112
__init__() (minihack.wiki.TextProcessor method), 113

A
AbstractRewardManager (class in mini-

hack.reward_manager), 102
add_altar() (minihack.level_generator.LevelGenerator

method), 96
add_altar() (minihack.LevelGenerator method), 79

add_amulet_event() (mini-
hack.reward_manager.RewardManager
method), 106

add_amulet_event() (minihack.RewardManager
method), 89

add_boulder() (mini-
hack.level_generator.LevelGenerator method),
96

add_boulder() (minihack.LevelGenerator method), 79
add_coordinate_event() (mini-

hack.reward_manager.RewardManager
method), 107

add_coordinate_event() (minihack.RewardManager
method), 90

add_custom_reward_fn() (mini-
hack.reward_manager.RewardManager
method), 107

add_custom_reward_fn() (minihack.RewardManager
method), 90

add_door() (minihack.level_generator.LevelGenerator
method), 96

add_door() (minihack.LevelGenerator method), 79
add_eat_event() (mini-

hack.reward_manager.RewardManager
method), 107

add_eat_event() (minihack.RewardManager method),
90

add_event() (minihack.reward_manager.RewardManager
method), 107

add_event() (minihack.RewardManager method), 90
add_fountain() (mini-

hack.level_generator.LevelGenerator method),
97

add_fountain() (minihack.LevelGenerator method), 79
add_goal_pos() (mini-

hack.level_generator.LevelGenerator method),
97

add_goal_pos() (minihack.LevelGenerator method), 80
add_gold() (minihack.level_generator.LevelGenerator

method), 97
add_gold() (minihack.LevelGenerator method), 80
add_kill_event() (mini-

117

MiniHack

hack.reward_manager.RewardManager
method), 108

add_kill_event() (minihack.RewardManager
method), 91

add_line() (minihack.level_generator.LevelGenerator
method), 97

add_line() (minihack.LevelGenerator method), 80
add_location_event() (mini-

hack.reward_manager.RewardManager
method), 108

add_location_event() (minihack.RewardManager
method), 91

add_mazewalk() (mini-
hack.level_generator.LevelGenerator method),
97

add_mazewalk() (minihack.LevelGenerator method), 80
add_message_event() (mini-

hack.reward_manager.RewardManager
method), 108

add_message_event() (minihack.RewardManager
method), 91

add_monster() (mini-
hack.level_generator.LevelGenerator method),
97

add_monster() (minihack.LevelGenerator method), 80
add_object() (minihack.level_generator.LevelGenerator

method), 98
add_object() (minihack.LevelGenerator method), 80
add_object_area() (mini-

hack.level_generator.LevelGenerator method),
98

add_object_area() (minihack.LevelGenerator
method), 81

add_positional_event() (mini-
hack.reward_manager.RewardManager
method), 108

add_positional_event() (minihack.RewardManager
method), 91

add_reward_manager() (mini-
hack.reward_manager.GroupedRewardManager
method), 104

add_sink() (minihack.level_generator.LevelGenerator
method), 98

add_sink() (minihack.LevelGenerator method), 81
add_stair_down() (mini-

hack.level_generator.LevelGenerator method),
98

add_stair_down() (minihack.LevelGenerator method),
81

add_terrain() (mini-
hack.level_generator.LevelGenerator method),
98

add_terrain() (minihack.LevelGenerator method), 81
add_trap() (minihack.level_generator.LevelGenerator

method), 98
add_trap() (minihack.LevelGenerator method), 81
add_wear_event() (mini-

hack.reward_manager.RewardManager
method), 109

add_wear_event() (minihack.RewardManager
method), 92

add_wield_event() (mini-
hack.reward_manager.RewardManager
method), 109

add_wield_event() (minihack.RewardManager
method), 92

C
check() (minihack.reward_manager.CoordEvent

method), 102
check() (minihack.reward_manager.Event method), 103
check() (minihack.reward_manager.LocActionEvent

method), 105
check() (minihack.reward_manager.LocEvent method),

105
check() (minihack.reward_manager.MessageEvent

method), 106
check_episode_end_call() (mini-

hack.reward_manager.AbstractRewardManager
method), 102

check_episode_end_call() (mini-
hack.reward_manager.GroupedRewardManager
method), 104

check_episode_end_call() (mini-
hack.reward_manager.RewardManager
method), 109

check_episode_end_call() (mini-
hack.reward_manager.SequentialRewardManager
method), 110

check_episode_end_call() (mini-
hack.RewardManager method), 92

clean_page_text() (in module minihack.wiki), 113
collect_reward() (mini-

hack.reward_manager.AbstractRewardManager
method), 102

collect_reward() (mini-
hack.reward_manager.GroupedRewardManager
method), 104

collect_reward() (mini-
hack.reward_manager.RewardManager
method), 110

collect_reward() (minihack.RewardManager
method), 93

COORD (minihack.reward_manager.EventType attribute),
103

CoordEvent (class in minihack.reward_manager), 102

118 Index

MiniHack

E
Event (class in minihack.reward_manager), 103
EventType (class in minihack.reward_manager), 103

F
fill_terrain() (mini-

hack.level_generator.LevelGenerator method),
99

fill_terrain() (minihack.LevelGenerator method), 81

G
get_des() (minihack.level_generator.LevelGenerator

method), 99
get_des() (minihack.LevelGenerator method), 82
get_map_array() (mini-

hack.level_generator.LevelGenerator method),
99

get_map_array() (minihack.LevelGenerator method),
82

get_map_str() (mini-
hack.level_generator.LevelGenerator method),
99

get_map_str() (minihack.LevelGenerator method), 82
get_neighbor_descriptions() (mini-

hack.base.MiniHack method), 94
get_neighbor_descriptions() (minihack.MiniHack

method), 84
get_neighbor_wiki_pages() (mini-

hack.base.MiniHack method), 94
get_neighbor_wiki_pages() (minihack.MiniHack

method), 84
get_object_direction() (minihack.base.MiniHack

method), 95
get_object_direction() (minihack.MiniHack

method), 84
get_page_data() (minihack.NetHackWiki method), 89
get_page_data() (minihack.wiki.NetHackWiki

method), 112
get_page_text() (minihack.NetHackWiki method), 89
get_page_text() (minihack.wiki.NetHackWiki

method), 112
get_screen_description() (mini-

hack.base.MiniHack method), 95
get_screen_description() (minihack.MiniHack

method), 84
get_screen_wiki_page() (minihack.base.MiniHack

method), 95
get_screen_wiki_page() (minihack.MiniHack

method), 84
GroupedRewardManager (class in mini-

hack.reward_manager), 103

I
init_map() (minihack.level_generator.LevelGenerator

method), 99
init_map() (minihack.LevelGenerator method), 82

K
key_in_inventory() (minihack.base.MiniHack

method), 95
key_in_inventory() (minihack.MiniHack method), 85

L
LevelGenerator (class in minihack), 78
LevelGenerator (class in minihack.level_generator), 96
load_json() (in module minihack.wiki), 113
LOC (minihack.reward_manager.EventType attribute), 103
LOC_ACTION (minihack.reward_manager.EventType at-

tribute), 103
LocActionEvent (class in minihack.reward_manager),

104
LocEvent (class in minihack.reward_manager), 105

M
MESSAGE (minihack.reward_manager.EventType at-

tribute), 103
MessageEvent (class in minihack.reward_manager), 105
minihack

module, 78
MiniHack (class in minihack), 83
MiniHack (class in minihack.base), 93
minihack.base

module, 93
minihack.level_generator

module, 96
minihack.navigation

module, 100
minihack.reward_manager

module, 102
minihack.skills

module, 110
minihack.wiki

module, 112
MiniHackNavigation (class in minihack), 85
MiniHackNavigation (class in minihack.navigation),

100
MiniHackSkill (class in minihack), 87
MiniHackSkill (class in minihack.skills), 110
module

minihack, 78
minihack.base, 93
minihack.level_generator, 96
minihack.navigation, 100
minihack.reward_manager, 102
minihack.skills, 110
minihack.wiki, 112

Index 119

MiniHack

N
NetHackWiki (class in minihack), 88
NetHackWiki (class in minihack.wiki), 112

P
preprocess() (minihack.wiki.TextProcessor method),

113
process() (minihack.wiki.TextProcessor method), 113
process_json() (in module minihack.wiki), 113

R
reset() (minihack.base.MiniHack method), 95
reset() (minihack.MiniHack method), 85
reset() (minihack.reward_manager.AbstractRewardManager

method), 102
reset() (minihack.reward_manager.Event method), 103
reset() (minihack.reward_manager.GroupedRewardManager

method), 104
reset() (minihack.reward_manager.LocActionEvent

method), 105
reset() (minihack.reward_manager.RewardManager

method), 110
reset() (minihack.RewardManager method), 93
RewardManager (class in minihack), 89
RewardManager (class in minihack.reward_manager),

106

S
screen_contains() (minihack.base.MiniHack

method), 95
screen_contains() (minihack.MiniHack method), 85
SequentialRewardManager (class in mini-

hack.reward_manager), 110
set_area_variable() (mini-

hack.level_generator.LevelGenerator method),
99

set_area_variable() (minihack.LevelGenerator
method), 82

set_start_pos() (mini-
hack.level_generator.LevelGenerator method),
100

set_start_pos() (minihack.LevelGenerator method),
82

set_start_rect() (mini-
hack.level_generator.LevelGenerator method),
100

set_start_rect() (minihack.LevelGenerator method),
82

step() (minihack.base.MiniHack method), 95
step() (minihack.MiniHack method), 85

T
TextProcessor (class in minihack.wiki), 113

U
update() (minihack.base.MiniHack method), 95
update() (minihack.MiniHack method), 85

W
wallify() (minihack.level_generator.LevelGenerator

method), 100
wallify() (minihack.LevelGenerator method), 83

120 Index

	MiniHack Level Editor
	Language Wrapper
	Papers using MiniHack
	Installation
	Extending MiniHack

	Submitting New Environments
	Trying out MiniHack
	Baseline Agents
	TorchBeast
	RLlib
	Unsupervised Environment Design

	Citation
	Contributions and Maintenance
	Installation
	Extending MiniHack
	Docker

	Trying out MiniHack
	Playing as a human

	Observation Spaces
	Overview
	Specifying the Observation Space
	Options

	Action Spaces
	Overview
	Specifying the Action Space
	Possible Actions

	Description files
	Overview
	Types of des-files
	Adding Entities to des-files
	Sources of Randomness in des-files
	Random Terrain Placement
	Further Information

	Creating New Environments
	Overview
	Level Generator
	Examples
	Example 1
	Example 2

	Reward Function
	Default Configuration
	Reward Manager

	Level Editor
	Overview
	Accessing the Level Editor

	MiniHack Environment Zoo
	Navigation Tasks
	Room
	Reward
	Source
	All Environments

	Corridor
	Reward
	Source
	All Environments

	KeyRoom
	Reward
	Source
	All Environments

	MazeWalk
	Reward
	Source
	All environments

	River
	Reward
	Source
	All Environments

	HideNSeek
	Reward
	Source
	All Environments

	CorridorBattle
	Reward
	Source
	All Environments

	Memento
	Reward
	Source
	All Environments

	MazeExplore
	Reward
	Source
	All Environments

	Skill Acquisition Tasks
	Simple Tasks
	Reward
	Source
	All Environments

	Lava Crossing
	Reward
	Source
	All Environments

	Wand of Death
	Reward
	Source
	All Environments

	Quest
	Reward
	Source
	All Environments

	Ported tasks
	MiniGrid
	Reward
	Source
	All Environments

	Boxoban
	Reward
	Source
	All Environments

	Submitting New Environments
	des-file format: A tutorial
	What is a des-file?
	The Two Types of des-files: MAZE and ROOM
	MAZE-type levels
	ROOM-type levels

	Adding complexity: Monsters, Objects & Traps
	Landscaping Terrain: selections and coordinates
	Controlling Randomness

	Wrapping up

	TorchBeast
	Installation
	Running Experiments
	Replicating the Results of the Paper
	Evaluate and Watch

	RLlib
	Installation
	Running Experiments

	Unsupervised Environment Design
	minihack package
	Submodules
	minihack.base module
	minihack.level_generator module
	minihack.navigation module
	minihack.reward_manager module
	minihack.skills module
	minihack.wiki module

	References
	NetHack
	NetHack Learning Environment

	Python Module Index
	Index

